| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ielefmnd.g | ⊢ 𝐺  =  ( EndoFMnd ‘ 𝐴 ) | 
						
							| 2 | 1 | efmndsgrp | ⊢ 𝐺  ∈  Smgrp | 
						
							| 3 | 2 | a1i | ⊢ ( 𝐴  ∈  𝑉  →  𝐺  ∈  Smgrp ) | 
						
							| 4 | 1 | ielefmnd | ⊢ ( 𝐴  ∈  𝑉  →  (  I   ↾  𝐴 )  ∈  ( Base ‘ 𝐺 ) ) | 
						
							| 5 |  | oveq1 | ⊢ ( 𝑖  =  (  I   ↾  𝐴 )  →  ( 𝑖 ( +g ‘ 𝐺 ) 𝑓 )  =  ( (  I   ↾  𝐴 ) ( +g ‘ 𝐺 ) 𝑓 ) ) | 
						
							| 6 | 5 | eqeq1d | ⊢ ( 𝑖  =  (  I   ↾  𝐴 )  →  ( ( 𝑖 ( +g ‘ 𝐺 ) 𝑓 )  =  𝑓  ↔  ( (  I   ↾  𝐴 ) ( +g ‘ 𝐺 ) 𝑓 )  =  𝑓 ) ) | 
						
							| 7 |  | oveq2 | ⊢ ( 𝑖  =  (  I   ↾  𝐴 )  →  ( 𝑓 ( +g ‘ 𝐺 ) 𝑖 )  =  ( 𝑓 ( +g ‘ 𝐺 ) (  I   ↾  𝐴 ) ) ) | 
						
							| 8 | 7 | eqeq1d | ⊢ ( 𝑖  =  (  I   ↾  𝐴 )  →  ( ( 𝑓 ( +g ‘ 𝐺 ) 𝑖 )  =  𝑓  ↔  ( 𝑓 ( +g ‘ 𝐺 ) (  I   ↾  𝐴 ) )  =  𝑓 ) ) | 
						
							| 9 | 6 8 | anbi12d | ⊢ ( 𝑖  =  (  I   ↾  𝐴 )  →  ( ( ( 𝑖 ( +g ‘ 𝐺 ) 𝑓 )  =  𝑓  ∧  ( 𝑓 ( +g ‘ 𝐺 ) 𝑖 )  =  𝑓 )  ↔  ( ( (  I   ↾  𝐴 ) ( +g ‘ 𝐺 ) 𝑓 )  =  𝑓  ∧  ( 𝑓 ( +g ‘ 𝐺 ) (  I   ↾  𝐴 ) )  =  𝑓 ) ) ) | 
						
							| 10 | 9 | ralbidv | ⊢ ( 𝑖  =  (  I   ↾  𝐴 )  →  ( ∀ 𝑓  ∈  ( Base ‘ 𝐺 ) ( ( 𝑖 ( +g ‘ 𝐺 ) 𝑓 )  =  𝑓  ∧  ( 𝑓 ( +g ‘ 𝐺 ) 𝑖 )  =  𝑓 )  ↔  ∀ 𝑓  ∈  ( Base ‘ 𝐺 ) ( ( (  I   ↾  𝐴 ) ( +g ‘ 𝐺 ) 𝑓 )  =  𝑓  ∧  ( 𝑓 ( +g ‘ 𝐺 ) (  I   ↾  𝐴 ) )  =  𝑓 ) ) ) | 
						
							| 11 | 10 | adantl | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝑖  =  (  I   ↾  𝐴 ) )  →  ( ∀ 𝑓  ∈  ( Base ‘ 𝐺 ) ( ( 𝑖 ( +g ‘ 𝐺 ) 𝑓 )  =  𝑓  ∧  ( 𝑓 ( +g ‘ 𝐺 ) 𝑖 )  =  𝑓 )  ↔  ∀ 𝑓  ∈  ( Base ‘ 𝐺 ) ( ( (  I   ↾  𝐴 ) ( +g ‘ 𝐺 ) 𝑓 )  =  𝑓  ∧  ( 𝑓 ( +g ‘ 𝐺 ) (  I   ↾  𝐴 ) )  =  𝑓 ) ) ) | 
						
							| 12 |  | eqid | ⊢ ( Base ‘ 𝐺 )  =  ( Base ‘ 𝐺 ) | 
						
							| 13 | 1 12 | efmndbasf | ⊢ ( 𝑓  ∈  ( Base ‘ 𝐺 )  →  𝑓 : 𝐴 ⟶ 𝐴 ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝑓  ∈  ( Base ‘ 𝐺 ) )  →  𝑓 : 𝐴 ⟶ 𝐴 ) | 
						
							| 15 |  | fcoi2 | ⊢ ( 𝑓 : 𝐴 ⟶ 𝐴  →  ( (  I   ↾  𝐴 )  ∘  𝑓 )  =  𝑓 ) | 
						
							| 16 |  | fcoi1 | ⊢ ( 𝑓 : 𝐴 ⟶ 𝐴  →  ( 𝑓  ∘  (  I   ↾  𝐴 ) )  =  𝑓 ) | 
						
							| 17 | 15 16 | jca | ⊢ ( 𝑓 : 𝐴 ⟶ 𝐴  →  ( ( (  I   ↾  𝐴 )  ∘  𝑓 )  =  𝑓  ∧  ( 𝑓  ∘  (  I   ↾  𝐴 ) )  =  𝑓 ) ) | 
						
							| 18 | 14 17 | syl | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝑓  ∈  ( Base ‘ 𝐺 ) )  →  ( ( (  I   ↾  𝐴 )  ∘  𝑓 )  =  𝑓  ∧  ( 𝑓  ∘  (  I   ↾  𝐴 ) )  =  𝑓 ) ) | 
						
							| 19 |  | eqid | ⊢ ( +g ‘ 𝐺 )  =  ( +g ‘ 𝐺 ) | 
						
							| 20 | 1 12 19 | efmndov | ⊢ ( ( (  I   ↾  𝐴 )  ∈  ( Base ‘ 𝐺 )  ∧  𝑓  ∈  ( Base ‘ 𝐺 ) )  →  ( (  I   ↾  𝐴 ) ( +g ‘ 𝐺 ) 𝑓 )  =  ( (  I   ↾  𝐴 )  ∘  𝑓 ) ) | 
						
							| 21 | 4 20 | sylan | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝑓  ∈  ( Base ‘ 𝐺 ) )  →  ( (  I   ↾  𝐴 ) ( +g ‘ 𝐺 ) 𝑓 )  =  ( (  I   ↾  𝐴 )  ∘  𝑓 ) ) | 
						
							| 22 | 21 | eqeq1d | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝑓  ∈  ( Base ‘ 𝐺 ) )  →  ( ( (  I   ↾  𝐴 ) ( +g ‘ 𝐺 ) 𝑓 )  =  𝑓  ↔  ( (  I   ↾  𝐴 )  ∘  𝑓 )  =  𝑓 ) ) | 
						
							| 23 | 4 | anim1ci | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝑓  ∈  ( Base ‘ 𝐺 ) )  →  ( 𝑓  ∈  ( Base ‘ 𝐺 )  ∧  (  I   ↾  𝐴 )  ∈  ( Base ‘ 𝐺 ) ) ) | 
						
							| 24 | 1 12 19 | efmndov | ⊢ ( ( 𝑓  ∈  ( Base ‘ 𝐺 )  ∧  (  I   ↾  𝐴 )  ∈  ( Base ‘ 𝐺 ) )  →  ( 𝑓 ( +g ‘ 𝐺 ) (  I   ↾  𝐴 ) )  =  ( 𝑓  ∘  (  I   ↾  𝐴 ) ) ) | 
						
							| 25 | 23 24 | syl | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝑓  ∈  ( Base ‘ 𝐺 ) )  →  ( 𝑓 ( +g ‘ 𝐺 ) (  I   ↾  𝐴 ) )  =  ( 𝑓  ∘  (  I   ↾  𝐴 ) ) ) | 
						
							| 26 | 25 | eqeq1d | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝑓  ∈  ( Base ‘ 𝐺 ) )  →  ( ( 𝑓 ( +g ‘ 𝐺 ) (  I   ↾  𝐴 ) )  =  𝑓  ↔  ( 𝑓  ∘  (  I   ↾  𝐴 ) )  =  𝑓 ) ) | 
						
							| 27 | 22 26 | anbi12d | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝑓  ∈  ( Base ‘ 𝐺 ) )  →  ( ( ( (  I   ↾  𝐴 ) ( +g ‘ 𝐺 ) 𝑓 )  =  𝑓  ∧  ( 𝑓 ( +g ‘ 𝐺 ) (  I   ↾  𝐴 ) )  =  𝑓 )  ↔  ( ( (  I   ↾  𝐴 )  ∘  𝑓 )  =  𝑓  ∧  ( 𝑓  ∘  (  I   ↾  𝐴 ) )  =  𝑓 ) ) ) | 
						
							| 28 | 18 27 | mpbird | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝑓  ∈  ( Base ‘ 𝐺 ) )  →  ( ( (  I   ↾  𝐴 ) ( +g ‘ 𝐺 ) 𝑓 )  =  𝑓  ∧  ( 𝑓 ( +g ‘ 𝐺 ) (  I   ↾  𝐴 ) )  =  𝑓 ) ) | 
						
							| 29 | 28 | ralrimiva | ⊢ ( 𝐴  ∈  𝑉  →  ∀ 𝑓  ∈  ( Base ‘ 𝐺 ) ( ( (  I   ↾  𝐴 ) ( +g ‘ 𝐺 ) 𝑓 )  =  𝑓  ∧  ( 𝑓 ( +g ‘ 𝐺 ) (  I   ↾  𝐴 ) )  =  𝑓 ) ) | 
						
							| 30 | 4 11 29 | rspcedvd | ⊢ ( 𝐴  ∈  𝑉  →  ∃ 𝑖  ∈  ( Base ‘ 𝐺 ) ∀ 𝑓  ∈  ( Base ‘ 𝐺 ) ( ( 𝑖 ( +g ‘ 𝐺 ) 𝑓 )  =  𝑓  ∧  ( 𝑓 ( +g ‘ 𝐺 ) 𝑖 )  =  𝑓 ) ) | 
						
							| 31 | 12 19 | ismnddef | ⊢ ( 𝐺  ∈  Mnd  ↔  ( 𝐺  ∈  Smgrp  ∧  ∃ 𝑖  ∈  ( Base ‘ 𝐺 ) ∀ 𝑓  ∈  ( Base ‘ 𝐺 ) ( ( 𝑖 ( +g ‘ 𝐺 ) 𝑓 )  =  𝑓  ∧  ( 𝑓 ( +g ‘ 𝐺 ) 𝑖 )  =  𝑓 ) ) ) | 
						
							| 32 | 3 30 31 | sylanbrc | ⊢ ( 𝐴  ∈  𝑉  →  𝐺  ∈  Mnd ) |