Step |
Hyp |
Ref |
Expression |
1 |
|
ielefmnd.g |
⊢ 𝐺 = ( EndoFMnd ‘ 𝐴 ) |
2 |
1
|
efmndsgrp |
⊢ 𝐺 ∈ Smgrp |
3 |
2
|
a1i |
⊢ ( 𝐴 ∈ 𝑉 → 𝐺 ∈ Smgrp ) |
4 |
1
|
ielefmnd |
⊢ ( 𝐴 ∈ 𝑉 → ( I ↾ 𝐴 ) ∈ ( Base ‘ 𝐺 ) ) |
5 |
|
oveq1 |
⊢ ( 𝑖 = ( I ↾ 𝐴 ) → ( 𝑖 ( +g ‘ 𝐺 ) 𝑓 ) = ( ( I ↾ 𝐴 ) ( +g ‘ 𝐺 ) 𝑓 ) ) |
6 |
5
|
eqeq1d |
⊢ ( 𝑖 = ( I ↾ 𝐴 ) → ( ( 𝑖 ( +g ‘ 𝐺 ) 𝑓 ) = 𝑓 ↔ ( ( I ↾ 𝐴 ) ( +g ‘ 𝐺 ) 𝑓 ) = 𝑓 ) ) |
7 |
|
oveq2 |
⊢ ( 𝑖 = ( I ↾ 𝐴 ) → ( 𝑓 ( +g ‘ 𝐺 ) 𝑖 ) = ( 𝑓 ( +g ‘ 𝐺 ) ( I ↾ 𝐴 ) ) ) |
8 |
7
|
eqeq1d |
⊢ ( 𝑖 = ( I ↾ 𝐴 ) → ( ( 𝑓 ( +g ‘ 𝐺 ) 𝑖 ) = 𝑓 ↔ ( 𝑓 ( +g ‘ 𝐺 ) ( I ↾ 𝐴 ) ) = 𝑓 ) ) |
9 |
6 8
|
anbi12d |
⊢ ( 𝑖 = ( I ↾ 𝐴 ) → ( ( ( 𝑖 ( +g ‘ 𝐺 ) 𝑓 ) = 𝑓 ∧ ( 𝑓 ( +g ‘ 𝐺 ) 𝑖 ) = 𝑓 ) ↔ ( ( ( I ↾ 𝐴 ) ( +g ‘ 𝐺 ) 𝑓 ) = 𝑓 ∧ ( 𝑓 ( +g ‘ 𝐺 ) ( I ↾ 𝐴 ) ) = 𝑓 ) ) ) |
10 |
9
|
ralbidv |
⊢ ( 𝑖 = ( I ↾ 𝐴 ) → ( ∀ 𝑓 ∈ ( Base ‘ 𝐺 ) ( ( 𝑖 ( +g ‘ 𝐺 ) 𝑓 ) = 𝑓 ∧ ( 𝑓 ( +g ‘ 𝐺 ) 𝑖 ) = 𝑓 ) ↔ ∀ 𝑓 ∈ ( Base ‘ 𝐺 ) ( ( ( I ↾ 𝐴 ) ( +g ‘ 𝐺 ) 𝑓 ) = 𝑓 ∧ ( 𝑓 ( +g ‘ 𝐺 ) ( I ↾ 𝐴 ) ) = 𝑓 ) ) ) |
11 |
10
|
adantl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑖 = ( I ↾ 𝐴 ) ) → ( ∀ 𝑓 ∈ ( Base ‘ 𝐺 ) ( ( 𝑖 ( +g ‘ 𝐺 ) 𝑓 ) = 𝑓 ∧ ( 𝑓 ( +g ‘ 𝐺 ) 𝑖 ) = 𝑓 ) ↔ ∀ 𝑓 ∈ ( Base ‘ 𝐺 ) ( ( ( I ↾ 𝐴 ) ( +g ‘ 𝐺 ) 𝑓 ) = 𝑓 ∧ ( 𝑓 ( +g ‘ 𝐺 ) ( I ↾ 𝐴 ) ) = 𝑓 ) ) ) |
12 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
13 |
1 12
|
efmndbasf |
⊢ ( 𝑓 ∈ ( Base ‘ 𝐺 ) → 𝑓 : 𝐴 ⟶ 𝐴 ) |
14 |
13
|
adantl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → 𝑓 : 𝐴 ⟶ 𝐴 ) |
15 |
|
fcoi2 |
⊢ ( 𝑓 : 𝐴 ⟶ 𝐴 → ( ( I ↾ 𝐴 ) ∘ 𝑓 ) = 𝑓 ) |
16 |
|
fcoi1 |
⊢ ( 𝑓 : 𝐴 ⟶ 𝐴 → ( 𝑓 ∘ ( I ↾ 𝐴 ) ) = 𝑓 ) |
17 |
15 16
|
jca |
⊢ ( 𝑓 : 𝐴 ⟶ 𝐴 → ( ( ( I ↾ 𝐴 ) ∘ 𝑓 ) = 𝑓 ∧ ( 𝑓 ∘ ( I ↾ 𝐴 ) ) = 𝑓 ) ) |
18 |
14 17
|
syl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → ( ( ( I ↾ 𝐴 ) ∘ 𝑓 ) = 𝑓 ∧ ( 𝑓 ∘ ( I ↾ 𝐴 ) ) = 𝑓 ) ) |
19 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
20 |
1 12 19
|
efmndov |
⊢ ( ( ( I ↾ 𝐴 ) ∈ ( Base ‘ 𝐺 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → ( ( I ↾ 𝐴 ) ( +g ‘ 𝐺 ) 𝑓 ) = ( ( I ↾ 𝐴 ) ∘ 𝑓 ) ) |
21 |
4 20
|
sylan |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → ( ( I ↾ 𝐴 ) ( +g ‘ 𝐺 ) 𝑓 ) = ( ( I ↾ 𝐴 ) ∘ 𝑓 ) ) |
22 |
21
|
eqeq1d |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → ( ( ( I ↾ 𝐴 ) ( +g ‘ 𝐺 ) 𝑓 ) = 𝑓 ↔ ( ( I ↾ 𝐴 ) ∘ 𝑓 ) = 𝑓 ) ) |
23 |
4
|
anim1ci |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑓 ∈ ( Base ‘ 𝐺 ) ∧ ( I ↾ 𝐴 ) ∈ ( Base ‘ 𝐺 ) ) ) |
24 |
1 12 19
|
efmndov |
⊢ ( ( 𝑓 ∈ ( Base ‘ 𝐺 ) ∧ ( I ↾ 𝐴 ) ∈ ( Base ‘ 𝐺 ) ) → ( 𝑓 ( +g ‘ 𝐺 ) ( I ↾ 𝐴 ) ) = ( 𝑓 ∘ ( I ↾ 𝐴 ) ) ) |
25 |
23 24
|
syl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑓 ( +g ‘ 𝐺 ) ( I ↾ 𝐴 ) ) = ( 𝑓 ∘ ( I ↾ 𝐴 ) ) ) |
26 |
25
|
eqeq1d |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → ( ( 𝑓 ( +g ‘ 𝐺 ) ( I ↾ 𝐴 ) ) = 𝑓 ↔ ( 𝑓 ∘ ( I ↾ 𝐴 ) ) = 𝑓 ) ) |
27 |
22 26
|
anbi12d |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → ( ( ( ( I ↾ 𝐴 ) ( +g ‘ 𝐺 ) 𝑓 ) = 𝑓 ∧ ( 𝑓 ( +g ‘ 𝐺 ) ( I ↾ 𝐴 ) ) = 𝑓 ) ↔ ( ( ( I ↾ 𝐴 ) ∘ 𝑓 ) = 𝑓 ∧ ( 𝑓 ∘ ( I ↾ 𝐴 ) ) = 𝑓 ) ) ) |
28 |
18 27
|
mpbird |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → ( ( ( I ↾ 𝐴 ) ( +g ‘ 𝐺 ) 𝑓 ) = 𝑓 ∧ ( 𝑓 ( +g ‘ 𝐺 ) ( I ↾ 𝐴 ) ) = 𝑓 ) ) |
29 |
28
|
ralrimiva |
⊢ ( 𝐴 ∈ 𝑉 → ∀ 𝑓 ∈ ( Base ‘ 𝐺 ) ( ( ( I ↾ 𝐴 ) ( +g ‘ 𝐺 ) 𝑓 ) = 𝑓 ∧ ( 𝑓 ( +g ‘ 𝐺 ) ( I ↾ 𝐴 ) ) = 𝑓 ) ) |
30 |
4 11 29
|
rspcedvd |
⊢ ( 𝐴 ∈ 𝑉 → ∃ 𝑖 ∈ ( Base ‘ 𝐺 ) ∀ 𝑓 ∈ ( Base ‘ 𝐺 ) ( ( 𝑖 ( +g ‘ 𝐺 ) 𝑓 ) = 𝑓 ∧ ( 𝑓 ( +g ‘ 𝐺 ) 𝑖 ) = 𝑓 ) ) |
31 |
12 19
|
ismnddef |
⊢ ( 𝐺 ∈ Mnd ↔ ( 𝐺 ∈ Smgrp ∧ ∃ 𝑖 ∈ ( Base ‘ 𝐺 ) ∀ 𝑓 ∈ ( Base ‘ 𝐺 ) ( ( 𝑖 ( +g ‘ 𝐺 ) 𝑓 ) = 𝑓 ∧ ( 𝑓 ( +g ‘ 𝐺 ) 𝑖 ) = 𝑓 ) ) ) |
32 |
3 30 31
|
sylanbrc |
⊢ ( 𝐴 ∈ 𝑉 → 𝐺 ∈ Mnd ) |