Step |
Hyp |
Ref |
Expression |
1 |
|
efmndtset.g |
⊢ 𝐺 = ( EndoFMnd ‘ 𝐴 ) |
2 |
|
efmndplusg.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
3 |
|
efmndplusg.p |
⊢ + = ( +g ‘ 𝐺 ) |
4 |
1 2
|
efmndbas |
⊢ 𝐵 = ( 𝐴 ↑m 𝐴 ) |
5 |
|
eqid |
⊢ ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑓 ∘ 𝑔 ) ) = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑓 ∘ 𝑔 ) ) |
6 |
|
eqid |
⊢ ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) = ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) |
7 |
1 4 5 6
|
efmnd |
⊢ ( 𝐴 ∈ V → 𝐺 = { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑓 ∘ 𝑔 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) 〉 } ) |
8 |
7
|
fveq2d |
⊢ ( 𝐴 ∈ V → ( +g ‘ 𝐺 ) = ( +g ‘ { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑓 ∘ 𝑔 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) 〉 } ) ) |
9 |
2
|
fvexi |
⊢ 𝐵 ∈ V |
10 |
9 9
|
mpoex |
⊢ ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑓 ∘ 𝑔 ) ) ∈ V |
11 |
|
eqid |
⊢ { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑓 ∘ 𝑔 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) 〉 } = { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑓 ∘ 𝑔 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) 〉 } |
12 |
11
|
topgrpplusg |
⊢ ( ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑓 ∘ 𝑔 ) ) ∈ V → ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑓 ∘ 𝑔 ) ) = ( +g ‘ { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑓 ∘ 𝑔 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) 〉 } ) ) |
13 |
10 12
|
ax-mp |
⊢ ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑓 ∘ 𝑔 ) ) = ( +g ‘ { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑓 ∘ 𝑔 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) 〉 } ) |
14 |
8 3 13
|
3eqtr4g |
⊢ ( 𝐴 ∈ V → + = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑓 ∘ 𝑔 ) ) ) |
15 |
|
fvprc |
⊢ ( ¬ 𝐴 ∈ V → ( EndoFMnd ‘ 𝐴 ) = ∅ ) |
16 |
1 15
|
eqtrid |
⊢ ( ¬ 𝐴 ∈ V → 𝐺 = ∅ ) |
17 |
16
|
fveq2d |
⊢ ( ¬ 𝐴 ∈ V → ( +g ‘ 𝐺 ) = ( +g ‘ ∅ ) ) |
18 |
|
plusgid |
⊢ +g = Slot ( +g ‘ ndx ) |
19 |
18
|
str0 |
⊢ ∅ = ( +g ‘ ∅ ) |
20 |
17 3 19
|
3eqtr4g |
⊢ ( ¬ 𝐴 ∈ V → + = ∅ ) |
21 |
16
|
fveq2d |
⊢ ( ¬ 𝐴 ∈ V → ( Base ‘ 𝐺 ) = ( Base ‘ ∅ ) ) |
22 |
|
base0 |
⊢ ∅ = ( Base ‘ ∅ ) |
23 |
21 2 22
|
3eqtr4g |
⊢ ( ¬ 𝐴 ∈ V → 𝐵 = ∅ ) |
24 |
23
|
olcd |
⊢ ( ¬ 𝐴 ∈ V → ( 𝐵 = ∅ ∨ 𝐵 = ∅ ) ) |
25 |
|
0mpo0 |
⊢ ( ( 𝐵 = ∅ ∨ 𝐵 = ∅ ) → ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑓 ∘ 𝑔 ) ) = ∅ ) |
26 |
24 25
|
syl |
⊢ ( ¬ 𝐴 ∈ V → ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑓 ∘ 𝑔 ) ) = ∅ ) |
27 |
20 26
|
eqtr4d |
⊢ ( ¬ 𝐴 ∈ V → + = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑓 ∘ 𝑔 ) ) ) |
28 |
14 27
|
pm2.61i |
⊢ + = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑓 ∘ 𝑔 ) ) |