Step |
Hyp |
Ref |
Expression |
1 |
|
efmndmgm.g |
⊢ 𝐺 = ( EndoFMnd ‘ 𝐴 ) |
2 |
1
|
efmndmgm |
⊢ 𝐺 ∈ Mgm |
3 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
4 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
5 |
1 3 4
|
efmndcl |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ ( Base ‘ 𝐺 ) ) |
6 |
1 3 4
|
efmndov |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑥 ∘ 𝑦 ) ) |
7 |
5 6
|
symggrplem |
⊢ ( ( 𝑓 ∈ ( Base ‘ 𝐺 ) ∧ 𝑔 ∈ ( Base ‘ 𝐺 ) ∧ ℎ ∈ ( Base ‘ 𝐺 ) ) → ( ( 𝑓 ( +g ‘ 𝐺 ) 𝑔 ) ( +g ‘ 𝐺 ) ℎ ) = ( 𝑓 ( +g ‘ 𝐺 ) ( 𝑔 ( +g ‘ 𝐺 ) ℎ ) ) ) |
8 |
7
|
rgen3 |
⊢ ∀ 𝑓 ∈ ( Base ‘ 𝐺 ) ∀ 𝑔 ∈ ( Base ‘ 𝐺 ) ∀ ℎ ∈ ( Base ‘ 𝐺 ) ( ( 𝑓 ( +g ‘ 𝐺 ) 𝑔 ) ( +g ‘ 𝐺 ) ℎ ) = ( 𝑓 ( +g ‘ 𝐺 ) ( 𝑔 ( +g ‘ 𝐺 ) ℎ ) ) |
9 |
3 4
|
issgrp |
⊢ ( 𝐺 ∈ Smgrp ↔ ( 𝐺 ∈ Mgm ∧ ∀ 𝑓 ∈ ( Base ‘ 𝐺 ) ∀ 𝑔 ∈ ( Base ‘ 𝐺 ) ∀ ℎ ∈ ( Base ‘ 𝐺 ) ( ( 𝑓 ( +g ‘ 𝐺 ) 𝑔 ) ( +g ‘ 𝐺 ) ℎ ) = ( 𝑓 ( +g ‘ 𝐺 ) ( 𝑔 ( +g ‘ 𝐺 ) ℎ ) ) ) ) |
10 |
2 8 9
|
mpbir2an |
⊢ 𝐺 ∈ Smgrp |