Step |
Hyp |
Ref |
Expression |
1 |
|
efmndtmd.g |
⊢ 𝑀 = ( EndoFMnd ‘ 𝐴 ) |
2 |
1
|
efmndmnd |
⊢ ( 𝐴 ∈ 𝑉 → 𝑀 ∈ Mnd ) |
3 |
|
eqid |
⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) |
4 |
1 3
|
efmndtopn |
⊢ ( 𝐴 ∈ 𝑉 → ( ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) ↾t ( Base ‘ 𝑀 ) ) = ( TopOpen ‘ 𝑀 ) ) |
5 |
|
distopon |
⊢ ( 𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ ( TopOn ‘ 𝐴 ) ) |
6 |
|
eqid |
⊢ ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) = ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) |
7 |
6
|
pttoponconst |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝒫 𝐴 ∈ ( TopOn ‘ 𝐴 ) ) → ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) ∈ ( TopOn ‘ ( 𝐴 ↑m 𝐴 ) ) ) |
8 |
5 7
|
mpdan |
⊢ ( 𝐴 ∈ 𝑉 → ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) ∈ ( TopOn ‘ ( 𝐴 ↑m 𝐴 ) ) ) |
9 |
1 3
|
efmndbas |
⊢ ( Base ‘ 𝑀 ) = ( 𝐴 ↑m 𝐴 ) |
10 |
9
|
eleq2i |
⊢ ( 𝑥 ∈ ( Base ‘ 𝑀 ) ↔ 𝑥 ∈ ( 𝐴 ↑m 𝐴 ) ) |
11 |
10
|
biimpi |
⊢ ( 𝑥 ∈ ( Base ‘ 𝑀 ) → 𝑥 ∈ ( 𝐴 ↑m 𝐴 ) ) |
12 |
11
|
a1i |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 ∈ ( Base ‘ 𝑀 ) → 𝑥 ∈ ( 𝐴 ↑m 𝐴 ) ) ) |
13 |
12
|
ssrdv |
⊢ ( 𝐴 ∈ 𝑉 → ( Base ‘ 𝑀 ) ⊆ ( 𝐴 ↑m 𝐴 ) ) |
14 |
|
resttopon |
⊢ ( ( ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) ∈ ( TopOn ‘ ( 𝐴 ↑m 𝐴 ) ) ∧ ( Base ‘ 𝑀 ) ⊆ ( 𝐴 ↑m 𝐴 ) ) → ( ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) ↾t ( Base ‘ 𝑀 ) ) ∈ ( TopOn ‘ ( Base ‘ 𝑀 ) ) ) |
15 |
8 13 14
|
syl2anc |
⊢ ( 𝐴 ∈ 𝑉 → ( ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) ↾t ( Base ‘ 𝑀 ) ) ∈ ( TopOn ‘ ( Base ‘ 𝑀 ) ) ) |
16 |
4 15
|
eqeltrrd |
⊢ ( 𝐴 ∈ 𝑉 → ( TopOpen ‘ 𝑀 ) ∈ ( TopOn ‘ ( Base ‘ 𝑀 ) ) ) |
17 |
|
eqid |
⊢ ( TopOpen ‘ 𝑀 ) = ( TopOpen ‘ 𝑀 ) |
18 |
3 17
|
istps |
⊢ ( 𝑀 ∈ TopSp ↔ ( TopOpen ‘ 𝑀 ) ∈ ( TopOn ‘ ( Base ‘ 𝑀 ) ) ) |
19 |
16 18
|
sylibr |
⊢ ( 𝐴 ∈ 𝑉 → 𝑀 ∈ TopSp ) |
20 |
|
eqid |
⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) |
21 |
1 3 20
|
efmndplusg |
⊢ ( +g ‘ 𝑀 ) = ( 𝑥 ∈ ( Base ‘ 𝑀 ) , 𝑦 ∈ ( Base ‘ 𝑀 ) ↦ ( 𝑥 ∘ 𝑦 ) ) |
22 |
|
eqid |
⊢ ( ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) ↾t ( Base ‘ 𝑀 ) ) = ( ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) ↾t ( Base ‘ 𝑀 ) ) |
23 |
|
distop |
⊢ ( 𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ Top ) |
24 |
|
eqid |
⊢ ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) = ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) |
25 |
24
|
xkotopon |
⊢ ( ( 𝒫 𝐴 ∈ Top ∧ 𝒫 𝐴 ∈ Top ) → ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) ∈ ( TopOn ‘ ( 𝒫 𝐴 Cn 𝒫 𝐴 ) ) ) |
26 |
23 23 25
|
syl2anc |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) ∈ ( TopOn ‘ ( 𝒫 𝐴 Cn 𝒫 𝐴 ) ) ) |
27 |
|
cndis |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝒫 𝐴 ∈ ( TopOn ‘ 𝐴 ) ) → ( 𝒫 𝐴 Cn 𝒫 𝐴 ) = ( 𝐴 ↑m 𝐴 ) ) |
28 |
5 27
|
mpdan |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝒫 𝐴 Cn 𝒫 𝐴 ) = ( 𝐴 ↑m 𝐴 ) ) |
29 |
13 28
|
sseqtrrd |
⊢ ( 𝐴 ∈ 𝑉 → ( Base ‘ 𝑀 ) ⊆ ( 𝒫 𝐴 Cn 𝒫 𝐴 ) ) |
30 |
|
disllycmp |
⊢ ( 𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ Locally Comp ) |
31 |
|
llynlly |
⊢ ( 𝒫 𝐴 ∈ Locally Comp → 𝒫 𝐴 ∈ 𝑛-Locally Comp ) |
32 |
30 31
|
syl |
⊢ ( 𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ 𝑛-Locally Comp ) |
33 |
|
eqid |
⊢ ( 𝑥 ∈ ( 𝒫 𝐴 Cn 𝒫 𝐴 ) , 𝑦 ∈ ( 𝒫 𝐴 Cn 𝒫 𝐴 ) ↦ ( 𝑥 ∘ 𝑦 ) ) = ( 𝑥 ∈ ( 𝒫 𝐴 Cn 𝒫 𝐴 ) , 𝑦 ∈ ( 𝒫 𝐴 Cn 𝒫 𝐴 ) ↦ ( 𝑥 ∘ 𝑦 ) ) |
34 |
33
|
xkococn |
⊢ ( ( 𝒫 𝐴 ∈ Top ∧ 𝒫 𝐴 ∈ 𝑛-Locally Comp ∧ 𝒫 𝐴 ∈ Top ) → ( 𝑥 ∈ ( 𝒫 𝐴 Cn 𝒫 𝐴 ) , 𝑦 ∈ ( 𝒫 𝐴 Cn 𝒫 𝐴 ) ↦ ( 𝑥 ∘ 𝑦 ) ) ∈ ( ( ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) ×t ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) ) Cn ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) ) ) |
35 |
23 32 23 34
|
syl3anc |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 ∈ ( 𝒫 𝐴 Cn 𝒫 𝐴 ) , 𝑦 ∈ ( 𝒫 𝐴 Cn 𝒫 𝐴 ) ↦ ( 𝑥 ∘ 𝑦 ) ) ∈ ( ( ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) ×t ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) ) Cn ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) ) ) |
36 |
22 26 29 22 26 29 35
|
cnmpt2res |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 ∈ ( Base ‘ 𝑀 ) , 𝑦 ∈ ( Base ‘ 𝑀 ) ↦ ( 𝑥 ∘ 𝑦 ) ) ∈ ( ( ( ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) ↾t ( Base ‘ 𝑀 ) ) ×t ( ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) ↾t ( Base ‘ 𝑀 ) ) ) Cn ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) ) ) |
37 |
21 36
|
eqeltrid |
⊢ ( 𝐴 ∈ 𝑉 → ( +g ‘ 𝑀 ) ∈ ( ( ( ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) ↾t ( Base ‘ 𝑀 ) ) ×t ( ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) ↾t ( Base ‘ 𝑀 ) ) ) Cn ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) ) ) |
38 |
|
xkopt |
⊢ ( ( 𝒫 𝐴 ∈ Top ∧ 𝐴 ∈ 𝑉 ) → ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) = ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) ) |
39 |
23 38
|
mpancom |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) = ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) ) |
40 |
39
|
oveq1d |
⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) ↾t ( Base ‘ 𝑀 ) ) = ( ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) ↾t ( Base ‘ 𝑀 ) ) ) |
41 |
40 4
|
eqtrd |
⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) ↾t ( Base ‘ 𝑀 ) ) = ( TopOpen ‘ 𝑀 ) ) |
42 |
41 41
|
oveq12d |
⊢ ( 𝐴 ∈ 𝑉 → ( ( ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) ↾t ( Base ‘ 𝑀 ) ) ×t ( ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) ↾t ( Base ‘ 𝑀 ) ) ) = ( ( TopOpen ‘ 𝑀 ) ×t ( TopOpen ‘ 𝑀 ) ) ) |
43 |
42
|
oveq1d |
⊢ ( 𝐴 ∈ 𝑉 → ( ( ( ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) ↾t ( Base ‘ 𝑀 ) ) ×t ( ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) ↾t ( Base ‘ 𝑀 ) ) ) Cn ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) ) = ( ( ( TopOpen ‘ 𝑀 ) ×t ( TopOpen ‘ 𝑀 ) ) Cn ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) ) ) |
44 |
37 43
|
eleqtrd |
⊢ ( 𝐴 ∈ 𝑉 → ( +g ‘ 𝑀 ) ∈ ( ( ( TopOpen ‘ 𝑀 ) ×t ( TopOpen ‘ 𝑀 ) ) Cn ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) ) ) |
45 |
|
vex |
⊢ 𝑥 ∈ V |
46 |
|
vex |
⊢ 𝑦 ∈ V |
47 |
45 46
|
coex |
⊢ ( 𝑥 ∘ 𝑦 ) ∈ V |
48 |
21 47
|
fnmpoi |
⊢ ( +g ‘ 𝑀 ) Fn ( ( Base ‘ 𝑀 ) × ( Base ‘ 𝑀 ) ) |
49 |
|
eqid |
⊢ ( +𝑓 ‘ 𝑀 ) = ( +𝑓 ‘ 𝑀 ) |
50 |
3 20 49
|
plusfeq |
⊢ ( ( +g ‘ 𝑀 ) Fn ( ( Base ‘ 𝑀 ) × ( Base ‘ 𝑀 ) ) → ( +𝑓 ‘ 𝑀 ) = ( +g ‘ 𝑀 ) ) |
51 |
48 50
|
ax-mp |
⊢ ( +𝑓 ‘ 𝑀 ) = ( +g ‘ 𝑀 ) |
52 |
51
|
eqcomi |
⊢ ( +g ‘ 𝑀 ) = ( +𝑓 ‘ 𝑀 ) |
53 |
3 52
|
mndplusf |
⊢ ( 𝑀 ∈ Mnd → ( +g ‘ 𝑀 ) : ( ( Base ‘ 𝑀 ) × ( Base ‘ 𝑀 ) ) ⟶ ( Base ‘ 𝑀 ) ) |
54 |
|
frn |
⊢ ( ( +g ‘ 𝑀 ) : ( ( Base ‘ 𝑀 ) × ( Base ‘ 𝑀 ) ) ⟶ ( Base ‘ 𝑀 ) → ran ( +g ‘ 𝑀 ) ⊆ ( Base ‘ 𝑀 ) ) |
55 |
2 53 54
|
3syl |
⊢ ( 𝐴 ∈ 𝑉 → ran ( +g ‘ 𝑀 ) ⊆ ( Base ‘ 𝑀 ) ) |
56 |
|
cnrest2 |
⊢ ( ( ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) ∈ ( TopOn ‘ ( 𝒫 𝐴 Cn 𝒫 𝐴 ) ) ∧ ran ( +g ‘ 𝑀 ) ⊆ ( Base ‘ 𝑀 ) ∧ ( Base ‘ 𝑀 ) ⊆ ( 𝒫 𝐴 Cn 𝒫 𝐴 ) ) → ( ( +g ‘ 𝑀 ) ∈ ( ( ( TopOpen ‘ 𝑀 ) ×t ( TopOpen ‘ 𝑀 ) ) Cn ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) ) ↔ ( +g ‘ 𝑀 ) ∈ ( ( ( TopOpen ‘ 𝑀 ) ×t ( TopOpen ‘ 𝑀 ) ) Cn ( ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) ↾t ( Base ‘ 𝑀 ) ) ) ) ) |
57 |
26 55 29 56
|
syl3anc |
⊢ ( 𝐴 ∈ 𝑉 → ( ( +g ‘ 𝑀 ) ∈ ( ( ( TopOpen ‘ 𝑀 ) ×t ( TopOpen ‘ 𝑀 ) ) Cn ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) ) ↔ ( +g ‘ 𝑀 ) ∈ ( ( ( TopOpen ‘ 𝑀 ) ×t ( TopOpen ‘ 𝑀 ) ) Cn ( ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) ↾t ( Base ‘ 𝑀 ) ) ) ) ) |
58 |
44 57
|
mpbid |
⊢ ( 𝐴 ∈ 𝑉 → ( +g ‘ 𝑀 ) ∈ ( ( ( TopOpen ‘ 𝑀 ) ×t ( TopOpen ‘ 𝑀 ) ) Cn ( ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) ↾t ( Base ‘ 𝑀 ) ) ) ) |
59 |
41
|
oveq2d |
⊢ ( 𝐴 ∈ 𝑉 → ( ( ( TopOpen ‘ 𝑀 ) ×t ( TopOpen ‘ 𝑀 ) ) Cn ( ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) ↾t ( Base ‘ 𝑀 ) ) ) = ( ( ( TopOpen ‘ 𝑀 ) ×t ( TopOpen ‘ 𝑀 ) ) Cn ( TopOpen ‘ 𝑀 ) ) ) |
60 |
58 59
|
eleqtrd |
⊢ ( 𝐴 ∈ 𝑉 → ( +g ‘ 𝑀 ) ∈ ( ( ( TopOpen ‘ 𝑀 ) ×t ( TopOpen ‘ 𝑀 ) ) Cn ( TopOpen ‘ 𝑀 ) ) ) |
61 |
52 17
|
istmd |
⊢ ( 𝑀 ∈ TopMnd ↔ ( 𝑀 ∈ Mnd ∧ 𝑀 ∈ TopSp ∧ ( +g ‘ 𝑀 ) ∈ ( ( ( TopOpen ‘ 𝑀 ) ×t ( TopOpen ‘ 𝑀 ) ) Cn ( TopOpen ‘ 𝑀 ) ) ) ) |
62 |
2 19 60 61
|
syl3anbrc |
⊢ ( 𝐴 ∈ 𝑉 → 𝑀 ∈ TopMnd ) |