Metamath Proof Explorer


Theorem efmndtopn

Description: The topology of the monoid of endofunctions on A . (Contributed by AV, 31-Jan-2024)

Ref Expression
Hypotheses efmndtopn.g 𝐺 = ( EndoFMnd ‘ 𝑋 )
efmndtopn.b 𝐵 = ( Base ‘ 𝐺 )
Assertion efmndtopn ( 𝑋𝑉 → ( ( ∏t ‘ ( 𝑋 × { 𝒫 𝑋 } ) ) ↾t 𝐵 ) = ( TopOpen ‘ 𝐺 ) )

Proof

Step Hyp Ref Expression
1 efmndtopn.g 𝐺 = ( EndoFMnd ‘ 𝑋 )
2 efmndtopn.b 𝐵 = ( Base ‘ 𝐺 )
3 1 efmndtset ( 𝑋𝑉 → ( ∏t ‘ ( 𝑋 × { 𝒫 𝑋 } ) ) = ( TopSet ‘ 𝐺 ) )
4 3 oveq1d ( 𝑋𝑉 → ( ( ∏t ‘ ( 𝑋 × { 𝒫 𝑋 } ) ) ↾t 𝐵 ) = ( ( TopSet ‘ 𝐺 ) ↾t 𝐵 ) )
5 eqid ( TopSet ‘ 𝐺 ) = ( TopSet ‘ 𝐺 )
6 2 5 topnval ( ( TopSet ‘ 𝐺 ) ↾t 𝐵 ) = ( TopOpen ‘ 𝐺 )
7 4 6 eqtrdi ( 𝑋𝑉 → ( ( ∏t ‘ ( 𝑋 × { 𝒫 𝑋 } ) ) ↾t 𝐵 ) = ( TopOpen ‘ 𝐺 ) )