Metamath Proof Explorer


Theorem efne0

Description: The exponential of a complex number is nonzero. Corollary 15-4.3 of Gleason p. 309. (Contributed by NM, 13-Jan-2006) (Revised by Mario Carneiro, 29-Apr-2014)

Ref Expression
Assertion efne0 ( 𝐴 ∈ ℂ → ( exp ‘ 𝐴 ) ≠ 0 )

Proof

Step Hyp Ref Expression
1 ax-1ne0 1 ≠ 0
2 oveq1 ( ( exp ‘ 𝐴 ) = 0 → ( ( exp ‘ 𝐴 ) · ( exp ‘ - 𝐴 ) ) = ( 0 · ( exp ‘ - 𝐴 ) ) )
3 efcan ( 𝐴 ∈ ℂ → ( ( exp ‘ 𝐴 ) · ( exp ‘ - 𝐴 ) ) = 1 )
4 negcl ( 𝐴 ∈ ℂ → - 𝐴 ∈ ℂ )
5 efcl ( - 𝐴 ∈ ℂ → ( exp ‘ - 𝐴 ) ∈ ℂ )
6 4 5 syl ( 𝐴 ∈ ℂ → ( exp ‘ - 𝐴 ) ∈ ℂ )
7 6 mul02d ( 𝐴 ∈ ℂ → ( 0 · ( exp ‘ - 𝐴 ) ) = 0 )
8 3 7 eqeq12d ( 𝐴 ∈ ℂ → ( ( ( exp ‘ 𝐴 ) · ( exp ‘ - 𝐴 ) ) = ( 0 · ( exp ‘ - 𝐴 ) ) ↔ 1 = 0 ) )
9 2 8 syl5ib ( 𝐴 ∈ ℂ → ( ( exp ‘ 𝐴 ) = 0 → 1 = 0 ) )
10 9 necon3d ( 𝐴 ∈ ℂ → ( 1 ≠ 0 → ( exp ‘ 𝐴 ) ≠ 0 ) )
11 1 10 mpi ( 𝐴 ∈ ℂ → ( exp ‘ 𝐴 ) ≠ 0 )