Description: The exponential of the opposite is the inverse of the exponential. (Contributed by Mario Carneiro, 10-May-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | efneg | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ - 𝐴 ) = ( 1 / ( exp ‘ 𝐴 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | efcl | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ 𝐴 ) ∈ ℂ ) | |
2 | negcl | ⊢ ( 𝐴 ∈ ℂ → - 𝐴 ∈ ℂ ) | |
3 | efcl | ⊢ ( - 𝐴 ∈ ℂ → ( exp ‘ - 𝐴 ) ∈ ℂ ) | |
4 | 2 3 | syl | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ - 𝐴 ) ∈ ℂ ) |
5 | efne0 | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ 𝐴 ) ≠ 0 ) | |
6 | efcan | ⊢ ( 𝐴 ∈ ℂ → ( ( exp ‘ 𝐴 ) · ( exp ‘ - 𝐴 ) ) = 1 ) | |
7 | 1 4 5 6 | mvllmuld | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ - 𝐴 ) = ( 1 / ( exp ‘ 𝐴 ) ) ) |