| Step | Hyp | Ref | Expression | 
						
							| 1 |  | efnnfsumcl.1 | ⊢ ( 𝜑  →  𝐴  ∈  Fin ) | 
						
							| 2 |  | efnnfsumcl.2 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝐵  ∈  ℝ ) | 
						
							| 3 |  | efnnfsumcl.3 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  ( exp ‘ 𝐵 )  ∈  ℕ ) | 
						
							| 4 |  | ssrab2 | ⊢ { 𝑥  ∈  ℝ  ∣  ( exp ‘ 𝑥 )  ∈  ℕ }  ⊆  ℝ | 
						
							| 5 |  | ax-resscn | ⊢ ℝ  ⊆  ℂ | 
						
							| 6 | 4 5 | sstri | ⊢ { 𝑥  ∈  ℝ  ∣  ( exp ‘ 𝑥 )  ∈  ℕ }  ⊆  ℂ | 
						
							| 7 | 6 | a1i | ⊢ ( 𝜑  →  { 𝑥  ∈  ℝ  ∣  ( exp ‘ 𝑥 )  ∈  ℕ }  ⊆  ℂ ) | 
						
							| 8 |  | fveq2 | ⊢ ( 𝑥  =  𝑦  →  ( exp ‘ 𝑥 )  =  ( exp ‘ 𝑦 ) ) | 
						
							| 9 | 8 | eleq1d | ⊢ ( 𝑥  =  𝑦  →  ( ( exp ‘ 𝑥 )  ∈  ℕ  ↔  ( exp ‘ 𝑦 )  ∈  ℕ ) ) | 
						
							| 10 | 9 | elrab | ⊢ ( 𝑦  ∈  { 𝑥  ∈  ℝ  ∣  ( exp ‘ 𝑥 )  ∈  ℕ }  ↔  ( 𝑦  ∈  ℝ  ∧  ( exp ‘ 𝑦 )  ∈  ℕ ) ) | 
						
							| 11 |  | fveq2 | ⊢ ( 𝑥  =  𝑧  →  ( exp ‘ 𝑥 )  =  ( exp ‘ 𝑧 ) ) | 
						
							| 12 | 11 | eleq1d | ⊢ ( 𝑥  =  𝑧  →  ( ( exp ‘ 𝑥 )  ∈  ℕ  ↔  ( exp ‘ 𝑧 )  ∈  ℕ ) ) | 
						
							| 13 | 12 | elrab | ⊢ ( 𝑧  ∈  { 𝑥  ∈  ℝ  ∣  ( exp ‘ 𝑥 )  ∈  ℕ }  ↔  ( 𝑧  ∈  ℝ  ∧  ( exp ‘ 𝑧 )  ∈  ℕ ) ) | 
						
							| 14 |  | fveq2 | ⊢ ( 𝑥  =  ( 𝑦  +  𝑧 )  →  ( exp ‘ 𝑥 )  =  ( exp ‘ ( 𝑦  +  𝑧 ) ) ) | 
						
							| 15 | 14 | eleq1d | ⊢ ( 𝑥  =  ( 𝑦  +  𝑧 )  →  ( ( exp ‘ 𝑥 )  ∈  ℕ  ↔  ( exp ‘ ( 𝑦  +  𝑧 ) )  ∈  ℕ ) ) | 
						
							| 16 |  | simpll | ⊢ ( ( ( 𝑦  ∈  ℝ  ∧  ( exp ‘ 𝑦 )  ∈  ℕ )  ∧  ( 𝑧  ∈  ℝ  ∧  ( exp ‘ 𝑧 )  ∈  ℕ ) )  →  𝑦  ∈  ℝ ) | 
						
							| 17 |  | simprl | ⊢ ( ( ( 𝑦  ∈  ℝ  ∧  ( exp ‘ 𝑦 )  ∈  ℕ )  ∧  ( 𝑧  ∈  ℝ  ∧  ( exp ‘ 𝑧 )  ∈  ℕ ) )  →  𝑧  ∈  ℝ ) | 
						
							| 18 | 16 17 | readdcld | ⊢ ( ( ( 𝑦  ∈  ℝ  ∧  ( exp ‘ 𝑦 )  ∈  ℕ )  ∧  ( 𝑧  ∈  ℝ  ∧  ( exp ‘ 𝑧 )  ∈  ℕ ) )  →  ( 𝑦  +  𝑧 )  ∈  ℝ ) | 
						
							| 19 | 16 | recnd | ⊢ ( ( ( 𝑦  ∈  ℝ  ∧  ( exp ‘ 𝑦 )  ∈  ℕ )  ∧  ( 𝑧  ∈  ℝ  ∧  ( exp ‘ 𝑧 )  ∈  ℕ ) )  →  𝑦  ∈  ℂ ) | 
						
							| 20 | 17 | recnd | ⊢ ( ( ( 𝑦  ∈  ℝ  ∧  ( exp ‘ 𝑦 )  ∈  ℕ )  ∧  ( 𝑧  ∈  ℝ  ∧  ( exp ‘ 𝑧 )  ∈  ℕ ) )  →  𝑧  ∈  ℂ ) | 
						
							| 21 |  | efadd | ⊢ ( ( 𝑦  ∈  ℂ  ∧  𝑧  ∈  ℂ )  →  ( exp ‘ ( 𝑦  +  𝑧 ) )  =  ( ( exp ‘ 𝑦 )  ·  ( exp ‘ 𝑧 ) ) ) | 
						
							| 22 | 19 20 21 | syl2anc | ⊢ ( ( ( 𝑦  ∈  ℝ  ∧  ( exp ‘ 𝑦 )  ∈  ℕ )  ∧  ( 𝑧  ∈  ℝ  ∧  ( exp ‘ 𝑧 )  ∈  ℕ ) )  →  ( exp ‘ ( 𝑦  +  𝑧 ) )  =  ( ( exp ‘ 𝑦 )  ·  ( exp ‘ 𝑧 ) ) ) | 
						
							| 23 |  | nnmulcl | ⊢ ( ( ( exp ‘ 𝑦 )  ∈  ℕ  ∧  ( exp ‘ 𝑧 )  ∈  ℕ )  →  ( ( exp ‘ 𝑦 )  ·  ( exp ‘ 𝑧 ) )  ∈  ℕ ) | 
						
							| 24 | 23 | ad2ant2l | ⊢ ( ( ( 𝑦  ∈  ℝ  ∧  ( exp ‘ 𝑦 )  ∈  ℕ )  ∧  ( 𝑧  ∈  ℝ  ∧  ( exp ‘ 𝑧 )  ∈  ℕ ) )  →  ( ( exp ‘ 𝑦 )  ·  ( exp ‘ 𝑧 ) )  ∈  ℕ ) | 
						
							| 25 | 22 24 | eqeltrd | ⊢ ( ( ( 𝑦  ∈  ℝ  ∧  ( exp ‘ 𝑦 )  ∈  ℕ )  ∧  ( 𝑧  ∈  ℝ  ∧  ( exp ‘ 𝑧 )  ∈  ℕ ) )  →  ( exp ‘ ( 𝑦  +  𝑧 ) )  ∈  ℕ ) | 
						
							| 26 | 15 18 25 | elrabd | ⊢ ( ( ( 𝑦  ∈  ℝ  ∧  ( exp ‘ 𝑦 )  ∈  ℕ )  ∧  ( 𝑧  ∈  ℝ  ∧  ( exp ‘ 𝑧 )  ∈  ℕ ) )  →  ( 𝑦  +  𝑧 )  ∈  { 𝑥  ∈  ℝ  ∣  ( exp ‘ 𝑥 )  ∈  ℕ } ) | 
						
							| 27 | 10 13 26 | syl2anb | ⊢ ( ( 𝑦  ∈  { 𝑥  ∈  ℝ  ∣  ( exp ‘ 𝑥 )  ∈  ℕ }  ∧  𝑧  ∈  { 𝑥  ∈  ℝ  ∣  ( exp ‘ 𝑥 )  ∈  ℕ } )  →  ( 𝑦  +  𝑧 )  ∈  { 𝑥  ∈  ℝ  ∣  ( exp ‘ 𝑥 )  ∈  ℕ } ) | 
						
							| 28 | 27 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  { 𝑥  ∈  ℝ  ∣  ( exp ‘ 𝑥 )  ∈  ℕ }  ∧  𝑧  ∈  { 𝑥  ∈  ℝ  ∣  ( exp ‘ 𝑥 )  ∈  ℕ } ) )  →  ( 𝑦  +  𝑧 )  ∈  { 𝑥  ∈  ℝ  ∣  ( exp ‘ 𝑥 )  ∈  ℕ } ) | 
						
							| 29 |  | fveq2 | ⊢ ( 𝑥  =  𝐵  →  ( exp ‘ 𝑥 )  =  ( exp ‘ 𝐵 ) ) | 
						
							| 30 | 29 | eleq1d | ⊢ ( 𝑥  =  𝐵  →  ( ( exp ‘ 𝑥 )  ∈  ℕ  ↔  ( exp ‘ 𝐵 )  ∈  ℕ ) ) | 
						
							| 31 | 30 2 3 | elrabd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝐵  ∈  { 𝑥  ∈  ℝ  ∣  ( exp ‘ 𝑥 )  ∈  ℕ } ) | 
						
							| 32 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 33 |  | 1nn | ⊢ 1  ∈  ℕ | 
						
							| 34 |  | fveq2 | ⊢ ( 𝑥  =  0  →  ( exp ‘ 𝑥 )  =  ( exp ‘ 0 ) ) | 
						
							| 35 |  | ef0 | ⊢ ( exp ‘ 0 )  =  1 | 
						
							| 36 | 34 35 | eqtrdi | ⊢ ( 𝑥  =  0  →  ( exp ‘ 𝑥 )  =  1 ) | 
						
							| 37 | 36 | eleq1d | ⊢ ( 𝑥  =  0  →  ( ( exp ‘ 𝑥 )  ∈  ℕ  ↔  1  ∈  ℕ ) ) | 
						
							| 38 | 37 | elrab | ⊢ ( 0  ∈  { 𝑥  ∈  ℝ  ∣  ( exp ‘ 𝑥 )  ∈  ℕ }  ↔  ( 0  ∈  ℝ  ∧  1  ∈  ℕ ) ) | 
						
							| 39 | 32 33 38 | mpbir2an | ⊢ 0  ∈  { 𝑥  ∈  ℝ  ∣  ( exp ‘ 𝑥 )  ∈  ℕ } | 
						
							| 40 | 39 | a1i | ⊢ ( 𝜑  →  0  ∈  { 𝑥  ∈  ℝ  ∣  ( exp ‘ 𝑥 )  ∈  ℕ } ) | 
						
							| 41 | 7 28 1 31 40 | fsumcllem | ⊢ ( 𝜑  →  Σ 𝑘  ∈  𝐴 𝐵  ∈  { 𝑥  ∈  ℝ  ∣  ( exp ‘ 𝑥 )  ∈  ℕ } ) | 
						
							| 42 |  | fveq2 | ⊢ ( 𝑥  =  Σ 𝑘  ∈  𝐴 𝐵  →  ( exp ‘ 𝑥 )  =  ( exp ‘ Σ 𝑘  ∈  𝐴 𝐵 ) ) | 
						
							| 43 | 42 | eleq1d | ⊢ ( 𝑥  =  Σ 𝑘  ∈  𝐴 𝐵  →  ( ( exp ‘ 𝑥 )  ∈  ℕ  ↔  ( exp ‘ Σ 𝑘  ∈  𝐴 𝐵 )  ∈  ℕ ) ) | 
						
							| 44 | 43 | elrab | ⊢ ( Σ 𝑘  ∈  𝐴 𝐵  ∈  { 𝑥  ∈  ℝ  ∣  ( exp ‘ 𝑥 )  ∈  ℕ }  ↔  ( Σ 𝑘  ∈  𝐴 𝐵  ∈  ℝ  ∧  ( exp ‘ Σ 𝑘  ∈  𝐴 𝐵 )  ∈  ℕ ) ) | 
						
							| 45 | 44 | simprbi | ⊢ ( Σ 𝑘  ∈  𝐴 𝐵  ∈  { 𝑥  ∈  ℝ  ∣  ( exp ‘ 𝑥 )  ∈  ℕ }  →  ( exp ‘ Σ 𝑘  ∈  𝐴 𝐵 )  ∈  ℕ ) | 
						
							| 46 | 41 45 | syl | ⊢ ( 𝜑  →  ( exp ‘ Σ 𝑘  ∈  𝐴 𝐵 )  ∈  ℕ ) |