Metamath Proof Explorer


Theorem efrirr

Description: A well-founded class does not belong to itself. (Contributed by NM, 18-Apr-1994) (Revised by Mario Carneiro, 22-Jun-2015)

Ref Expression
Assertion efrirr ( E Fr 𝐴 → ¬ 𝐴𝐴 )

Proof

Step Hyp Ref Expression
1 frirr ( ( E Fr 𝐴𝐴𝐴 ) → ¬ 𝐴 E 𝐴 )
2 epelg ( 𝐴𝐴 → ( 𝐴 E 𝐴𝐴𝐴 ) )
3 2 adantl ( ( E Fr 𝐴𝐴𝐴 ) → ( 𝐴 E 𝐴𝐴𝐴 ) )
4 1 3 mtbid ( ( E Fr 𝐴𝐴𝐴 ) → ¬ 𝐴𝐴 )
5 4 pm2.01da ( E Fr 𝐴 → ¬ 𝐴𝐴 )