Metamath Proof Explorer


Theorem efrn2lp

Description: A well-founded class contains no 2-cycle loops. (Contributed by NM, 19-Apr-1994)

Ref Expression
Assertion efrn2lp ( ( E Fr 𝐴 ∧ ( 𝐵𝐴𝐶𝐴 ) ) → ¬ ( 𝐵𝐶𝐶𝐵 ) )

Proof

Step Hyp Ref Expression
1 fr2nr ( ( E Fr 𝐴 ∧ ( 𝐵𝐴𝐶𝐴 ) ) → ¬ ( 𝐵 E 𝐶𝐶 E 𝐵 ) )
2 epelg ( 𝐶𝐴 → ( 𝐵 E 𝐶𝐵𝐶 ) )
3 epelg ( 𝐵𝐴 → ( 𝐶 E 𝐵𝐶𝐵 ) )
4 2 3 bi2anan9r ( ( 𝐵𝐴𝐶𝐴 ) → ( ( 𝐵 E 𝐶𝐶 E 𝐵 ) ↔ ( 𝐵𝐶𝐶𝐵 ) ) )
5 4 adantl ( ( E Fr 𝐴 ∧ ( 𝐵𝐴𝐶𝐴 ) ) → ( ( 𝐵 E 𝐶𝐶 E 𝐵 ) ↔ ( 𝐵𝐶𝐶𝐵 ) ) )
6 1 5 mtbid ( ( E Fr 𝐴 ∧ ( 𝐵𝐴𝐶𝐴 ) ) → ¬ ( 𝐵𝐶𝐶𝐵 ) )