Metamath Proof Explorer


Theorem efsubm

Description: The image of a subgroup of the group + , under the exponential function of a scaled complex number is a submonoid of the multiplicative group of CCfld . (Contributed by Thierry Arnoux, 26-Jan-2020)

Ref Expression
Hypotheses efabl.1 𝐹 = ( 𝑥𝑋 ↦ ( exp ‘ ( 𝐴 · 𝑥 ) ) )
efabl.2 𝐺 = ( ( mulGrp ‘ ℂfld ) ↾s ran 𝐹 )
efabl.3 ( 𝜑𝐴 ∈ ℂ )
efabl.4 ( 𝜑𝑋 ∈ ( SubGrp ‘ ℂfld ) )
Assertion efsubm ( 𝜑 → ran 𝐹 ∈ ( SubMnd ‘ ( mulGrp ‘ ℂfld ) ) )

Proof

Step Hyp Ref Expression
1 efabl.1 𝐹 = ( 𝑥𝑋 ↦ ( exp ‘ ( 𝐴 · 𝑥 ) ) )
2 efabl.2 𝐺 = ( ( mulGrp ‘ ℂfld ) ↾s ran 𝐹 )
3 efabl.3 ( 𝜑𝐴 ∈ ℂ )
4 efabl.4 ( 𝜑𝑋 ∈ ( SubGrp ‘ ℂfld ) )
5 eff exp : ℂ ⟶ ℂ
6 5 a1i ( ( 𝜑𝑥𝑋 ) → exp : ℂ ⟶ ℂ )
7 3 adantr ( ( 𝜑𝑥𝑋 ) → 𝐴 ∈ ℂ )
8 cnfldbas ℂ = ( Base ‘ ℂfld )
9 8 subgss ( 𝑋 ∈ ( SubGrp ‘ ℂfld ) → 𝑋 ⊆ ℂ )
10 4 9 syl ( 𝜑𝑋 ⊆ ℂ )
11 10 sselda ( ( 𝜑𝑥𝑋 ) → 𝑥 ∈ ℂ )
12 7 11 mulcld ( ( 𝜑𝑥𝑋 ) → ( 𝐴 · 𝑥 ) ∈ ℂ )
13 6 12 ffvelrnd ( ( 𝜑𝑥𝑋 ) → ( exp ‘ ( 𝐴 · 𝑥 ) ) ∈ ℂ )
14 13 ralrimiva ( 𝜑 → ∀ 𝑥𝑋 ( exp ‘ ( 𝐴 · 𝑥 ) ) ∈ ℂ )
15 1 rnmptss ( ∀ 𝑥𝑋 ( exp ‘ ( 𝐴 · 𝑥 ) ) ∈ ℂ → ran 𝐹 ⊆ ℂ )
16 14 15 syl ( 𝜑 → ran 𝐹 ⊆ ℂ )
17 3 mul01d ( 𝜑 → ( 𝐴 · 0 ) = 0 )
18 17 fveq2d ( 𝜑 → ( exp ‘ ( 𝐴 · 0 ) ) = ( exp ‘ 0 ) )
19 ef0 ( exp ‘ 0 ) = 1
20 18 19 eqtrdi ( 𝜑 → ( exp ‘ ( 𝐴 · 0 ) ) = 1 )
21 cnfld0 0 = ( 0g ‘ ℂfld )
22 21 subg0cl ( 𝑋 ∈ ( SubGrp ‘ ℂfld ) → 0 ∈ 𝑋 )
23 4 22 syl ( 𝜑 → 0 ∈ 𝑋 )
24 fvex ( exp ‘ ( 𝐴 · 0 ) ) ∈ V
25 oveq2 ( 𝑥 = 0 → ( 𝐴 · 𝑥 ) = ( 𝐴 · 0 ) )
26 25 fveq2d ( 𝑥 = 0 → ( exp ‘ ( 𝐴 · 𝑥 ) ) = ( exp ‘ ( 𝐴 · 0 ) ) )
27 1 26 elrnmpt1s ( ( 0 ∈ 𝑋 ∧ ( exp ‘ ( 𝐴 · 0 ) ) ∈ V ) → ( exp ‘ ( 𝐴 · 0 ) ) ∈ ran 𝐹 )
28 23 24 27 sylancl ( 𝜑 → ( exp ‘ ( 𝐴 · 0 ) ) ∈ ran 𝐹 )
29 20 28 eqeltrrd ( 𝜑 → 1 ∈ ran 𝐹 )
30 1 2 3 4 efabl ( 𝜑𝐺 ∈ Abel )
31 ablgrp ( 𝐺 ∈ Abel → 𝐺 ∈ Grp )
32 30 31 syl ( 𝜑𝐺 ∈ Grp )
33 32 3ad2ant1 ( ( 𝜑𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹 ) → 𝐺 ∈ Grp )
34 simp2 ( ( 𝜑𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹 ) → 𝑥 ∈ ran 𝐹 )
35 eqid ( mulGrp ‘ ℂfld ) = ( mulGrp ‘ ℂfld )
36 35 8 mgpbas ℂ = ( Base ‘ ( mulGrp ‘ ℂfld ) )
37 2 36 ressbas2 ( ran 𝐹 ⊆ ℂ → ran 𝐹 = ( Base ‘ 𝐺 ) )
38 16 37 syl ( 𝜑 → ran 𝐹 = ( Base ‘ 𝐺 ) )
39 38 3ad2ant1 ( ( 𝜑𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹 ) → ran 𝐹 = ( Base ‘ 𝐺 ) )
40 34 39 eleqtrd ( ( 𝜑𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹 ) → 𝑥 ∈ ( Base ‘ 𝐺 ) )
41 simp3 ( ( 𝜑𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹 ) → 𝑦 ∈ ran 𝐹 )
42 41 39 eleqtrd ( ( 𝜑𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹 ) → 𝑦 ∈ ( Base ‘ 𝐺 ) )
43 eqid ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 )
44 eqid ( +g𝐺 ) = ( +g𝐺 )
45 43 44 grpcl ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑥 ( +g𝐺 ) 𝑦 ) ∈ ( Base ‘ 𝐺 ) )
46 33 40 42 45 syl3anc ( ( 𝜑𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹 ) → ( 𝑥 ( +g𝐺 ) 𝑦 ) ∈ ( Base ‘ 𝐺 ) )
47 4 mptexd ( 𝜑 → ( 𝑥𝑋 ↦ ( exp ‘ ( 𝐴 · 𝑥 ) ) ) ∈ V )
48 1 47 eqeltrid ( 𝜑𝐹 ∈ V )
49 rnexg ( 𝐹 ∈ V → ran 𝐹 ∈ V )
50 cnfldmul · = ( .r ‘ ℂfld )
51 35 50 mgpplusg · = ( +g ‘ ( mulGrp ‘ ℂfld ) )
52 2 51 ressplusg ( ran 𝐹 ∈ V → · = ( +g𝐺 ) )
53 48 49 52 3syl ( 𝜑 → · = ( +g𝐺 ) )
54 53 3ad2ant1 ( ( 𝜑𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹 ) → · = ( +g𝐺 ) )
55 54 oveqd ( ( 𝜑𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹 ) → ( 𝑥 · 𝑦 ) = ( 𝑥 ( +g𝐺 ) 𝑦 ) )
56 46 55 39 3eltr4d ( ( 𝜑𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹 ) → ( 𝑥 · 𝑦 ) ∈ ran 𝐹 )
57 56 3expb ( ( 𝜑 ∧ ( 𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹 ) ) → ( 𝑥 · 𝑦 ) ∈ ran 𝐹 )
58 57 ralrimivva ( 𝜑 → ∀ 𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹 ( 𝑥 · 𝑦 ) ∈ ran 𝐹 )
59 cnring fld ∈ Ring
60 35 ringmgp ( ℂfld ∈ Ring → ( mulGrp ‘ ℂfld ) ∈ Mnd )
61 cnfld1 1 = ( 1r ‘ ℂfld )
62 35 61 ringidval 1 = ( 0g ‘ ( mulGrp ‘ ℂfld ) )
63 36 62 51 issubm ( ( mulGrp ‘ ℂfld ) ∈ Mnd → ( ran 𝐹 ∈ ( SubMnd ‘ ( mulGrp ‘ ℂfld ) ) ↔ ( ran 𝐹 ⊆ ℂ ∧ 1 ∈ ran 𝐹 ∧ ∀ 𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹 ( 𝑥 · 𝑦 ) ∈ ran 𝐹 ) ) )
64 59 60 63 mp2b ( ran 𝐹 ∈ ( SubMnd ‘ ( mulGrp ‘ ℂfld ) ) ↔ ( ran 𝐹 ⊆ ℂ ∧ 1 ∈ ran 𝐹 ∧ ∀ 𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹 ( 𝑥 · 𝑦 ) ∈ ran 𝐹 ) )
65 16 29 58 64 syl3anbrc ( 𝜑 → ran 𝐹 ∈ ( SubMnd ‘ ( mulGrp ‘ ℂfld ) ) )