Step |
Hyp |
Ref |
Expression |
1 |
|
efabl.1 |
⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ ( exp ‘ ( 𝐴 · 𝑥 ) ) ) |
2 |
|
efabl.2 |
⊢ 𝐺 = ( ( mulGrp ‘ ℂfld ) ↾s ran 𝐹 ) |
3 |
|
efabl.3 |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
4 |
|
efabl.4 |
⊢ ( 𝜑 → 𝑋 ∈ ( SubGrp ‘ ℂfld ) ) |
5 |
|
eff |
⊢ exp : ℂ ⟶ ℂ |
6 |
5
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → exp : ℂ ⟶ ℂ ) |
7 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) |
8 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
9 |
8
|
subgss |
⊢ ( 𝑋 ∈ ( SubGrp ‘ ℂfld ) → 𝑋 ⊆ ℂ ) |
10 |
4 9
|
syl |
⊢ ( 𝜑 → 𝑋 ⊆ ℂ ) |
11 |
10
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ ℂ ) |
12 |
7 11
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐴 · 𝑥 ) ∈ ℂ ) |
13 |
6 12
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( exp ‘ ( 𝐴 · 𝑥 ) ) ∈ ℂ ) |
14 |
13
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ( exp ‘ ( 𝐴 · 𝑥 ) ) ∈ ℂ ) |
15 |
1
|
rnmptss |
⊢ ( ∀ 𝑥 ∈ 𝑋 ( exp ‘ ( 𝐴 · 𝑥 ) ) ∈ ℂ → ran 𝐹 ⊆ ℂ ) |
16 |
14 15
|
syl |
⊢ ( 𝜑 → ran 𝐹 ⊆ ℂ ) |
17 |
3
|
mul01d |
⊢ ( 𝜑 → ( 𝐴 · 0 ) = 0 ) |
18 |
17
|
fveq2d |
⊢ ( 𝜑 → ( exp ‘ ( 𝐴 · 0 ) ) = ( exp ‘ 0 ) ) |
19 |
|
ef0 |
⊢ ( exp ‘ 0 ) = 1 |
20 |
18 19
|
eqtrdi |
⊢ ( 𝜑 → ( exp ‘ ( 𝐴 · 0 ) ) = 1 ) |
21 |
|
cnfld0 |
⊢ 0 = ( 0g ‘ ℂfld ) |
22 |
21
|
subg0cl |
⊢ ( 𝑋 ∈ ( SubGrp ‘ ℂfld ) → 0 ∈ 𝑋 ) |
23 |
4 22
|
syl |
⊢ ( 𝜑 → 0 ∈ 𝑋 ) |
24 |
|
fvex |
⊢ ( exp ‘ ( 𝐴 · 0 ) ) ∈ V |
25 |
|
oveq2 |
⊢ ( 𝑥 = 0 → ( 𝐴 · 𝑥 ) = ( 𝐴 · 0 ) ) |
26 |
25
|
fveq2d |
⊢ ( 𝑥 = 0 → ( exp ‘ ( 𝐴 · 𝑥 ) ) = ( exp ‘ ( 𝐴 · 0 ) ) ) |
27 |
1 26
|
elrnmpt1s |
⊢ ( ( 0 ∈ 𝑋 ∧ ( exp ‘ ( 𝐴 · 0 ) ) ∈ V ) → ( exp ‘ ( 𝐴 · 0 ) ) ∈ ran 𝐹 ) |
28 |
23 24 27
|
sylancl |
⊢ ( 𝜑 → ( exp ‘ ( 𝐴 · 0 ) ) ∈ ran 𝐹 ) |
29 |
20 28
|
eqeltrrd |
⊢ ( 𝜑 → 1 ∈ ran 𝐹 ) |
30 |
1 2 3 4
|
efabl |
⊢ ( 𝜑 → 𝐺 ∈ Abel ) |
31 |
|
ablgrp |
⊢ ( 𝐺 ∈ Abel → 𝐺 ∈ Grp ) |
32 |
30 31
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
33 |
32
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ran 𝐹 ∧ 𝑦 ∈ ran 𝐹 ) → 𝐺 ∈ Grp ) |
34 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ran 𝐹 ∧ 𝑦 ∈ ran 𝐹 ) → 𝑥 ∈ ran 𝐹 ) |
35 |
|
eqid |
⊢ ( mulGrp ‘ ℂfld ) = ( mulGrp ‘ ℂfld ) |
36 |
35 8
|
mgpbas |
⊢ ℂ = ( Base ‘ ( mulGrp ‘ ℂfld ) ) |
37 |
2 36
|
ressbas2 |
⊢ ( ran 𝐹 ⊆ ℂ → ran 𝐹 = ( Base ‘ 𝐺 ) ) |
38 |
16 37
|
syl |
⊢ ( 𝜑 → ran 𝐹 = ( Base ‘ 𝐺 ) ) |
39 |
38
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ran 𝐹 ∧ 𝑦 ∈ ran 𝐹 ) → ran 𝐹 = ( Base ‘ 𝐺 ) ) |
40 |
34 39
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ran 𝐹 ∧ 𝑦 ∈ ran 𝐹 ) → 𝑥 ∈ ( Base ‘ 𝐺 ) ) |
41 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ran 𝐹 ∧ 𝑦 ∈ ran 𝐹 ) → 𝑦 ∈ ran 𝐹 ) |
42 |
41 39
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ran 𝐹 ∧ 𝑦 ∈ ran 𝐹 ) → 𝑦 ∈ ( Base ‘ 𝐺 ) ) |
43 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
44 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
45 |
43 44
|
grpcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ ( Base ‘ 𝐺 ) ) |
46 |
33 40 42 45
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ran 𝐹 ∧ 𝑦 ∈ ran 𝐹 ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ ( Base ‘ 𝐺 ) ) |
47 |
4
|
mptexd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( exp ‘ ( 𝐴 · 𝑥 ) ) ) ∈ V ) |
48 |
1 47
|
eqeltrid |
⊢ ( 𝜑 → 𝐹 ∈ V ) |
49 |
|
rnexg |
⊢ ( 𝐹 ∈ V → ran 𝐹 ∈ V ) |
50 |
|
cnfldmul |
⊢ · = ( .r ‘ ℂfld ) |
51 |
35 50
|
mgpplusg |
⊢ · = ( +g ‘ ( mulGrp ‘ ℂfld ) ) |
52 |
2 51
|
ressplusg |
⊢ ( ran 𝐹 ∈ V → · = ( +g ‘ 𝐺 ) ) |
53 |
48 49 52
|
3syl |
⊢ ( 𝜑 → · = ( +g ‘ 𝐺 ) ) |
54 |
53
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ran 𝐹 ∧ 𝑦 ∈ ran 𝐹 ) → · = ( +g ‘ 𝐺 ) ) |
55 |
54
|
oveqd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ran 𝐹 ∧ 𝑦 ∈ ran 𝐹 ) → ( 𝑥 · 𝑦 ) = ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) |
56 |
46 55 39
|
3eltr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ran 𝐹 ∧ 𝑦 ∈ ran 𝐹 ) → ( 𝑥 · 𝑦 ) ∈ ran 𝐹 ) |
57 |
56
|
3expb |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ran 𝐹 ∧ 𝑦 ∈ ran 𝐹 ) ) → ( 𝑥 · 𝑦 ) ∈ ran 𝐹 ) |
58 |
57
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ran 𝐹 ∀ 𝑦 ∈ ran 𝐹 ( 𝑥 · 𝑦 ) ∈ ran 𝐹 ) |
59 |
|
cnring |
⊢ ℂfld ∈ Ring |
60 |
35
|
ringmgp |
⊢ ( ℂfld ∈ Ring → ( mulGrp ‘ ℂfld ) ∈ Mnd ) |
61 |
|
cnfld1 |
⊢ 1 = ( 1r ‘ ℂfld ) |
62 |
35 61
|
ringidval |
⊢ 1 = ( 0g ‘ ( mulGrp ‘ ℂfld ) ) |
63 |
36 62 51
|
issubm |
⊢ ( ( mulGrp ‘ ℂfld ) ∈ Mnd → ( ran 𝐹 ∈ ( SubMnd ‘ ( mulGrp ‘ ℂfld ) ) ↔ ( ran 𝐹 ⊆ ℂ ∧ 1 ∈ ran 𝐹 ∧ ∀ 𝑥 ∈ ran 𝐹 ∀ 𝑦 ∈ ran 𝐹 ( 𝑥 · 𝑦 ) ∈ ran 𝐹 ) ) ) |
64 |
59 60 63
|
mp2b |
⊢ ( ran 𝐹 ∈ ( SubMnd ‘ ( mulGrp ‘ ℂfld ) ) ↔ ( ran 𝐹 ⊆ ℂ ∧ 1 ∈ ran 𝐹 ∧ ∀ 𝑥 ∈ ran 𝐹 ∀ 𝑦 ∈ ran 𝐹 ( 𝑥 · 𝑦 ) ∈ ran 𝐹 ) ) |
65 |
16 29 58 64
|
syl3anbrc |
⊢ ( 𝜑 → ran 𝐹 ∈ ( SubMnd ‘ ( mulGrp ‘ ℂfld ) ) ) |