Metamath Proof Explorer


Theorem eft0val

Description: The value of the first term of the series expansion of the exponential function is 1. (Contributed by Paul Chapman, 21-Aug-2007) (Revised by Mario Carneiro, 29-Apr-2014)

Ref Expression
Assertion eft0val ( 𝐴 ∈ ℂ → ( ( 𝐴 ↑ 0 ) / ( ! ‘ 0 ) ) = 1 )

Proof

Step Hyp Ref Expression
1 exp0 ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 0 ) = 1 )
2 1 oveq1d ( 𝐴 ∈ ℂ → ( ( 𝐴 ↑ 0 ) / ( ! ‘ 0 ) ) = ( 1 / ( ! ‘ 0 ) ) )
3 fac0 ( ! ‘ 0 ) = 1
4 3 oveq2i ( 1 / ( ! ‘ 0 ) ) = ( 1 / 1 )
5 1div1e1 ( 1 / 1 ) = 1
6 4 5 eqtri ( 1 / ( ! ‘ 0 ) ) = 1
7 2 6 eqtrdi ( 𝐴 ∈ ℂ → ( ( 𝐴 ↑ 0 ) / ( ! ‘ 0 ) ) = 1 )