Step |
Hyp |
Ref |
Expression |
1 |
|
expcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐾 ∈ ℕ0 ) → ( 𝐴 ↑ 𝐾 ) ∈ ℂ ) |
2 |
|
faccl |
⊢ ( 𝐾 ∈ ℕ0 → ( ! ‘ 𝐾 ) ∈ ℕ ) |
3 |
2
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐾 ∈ ℕ0 ) → ( ! ‘ 𝐾 ) ∈ ℕ ) |
4 |
3
|
nncnd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐾 ∈ ℕ0 ) → ( ! ‘ 𝐾 ) ∈ ℂ ) |
5 |
|
facne0 |
⊢ ( 𝐾 ∈ ℕ0 → ( ! ‘ 𝐾 ) ≠ 0 ) |
6 |
5
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐾 ∈ ℕ0 ) → ( ! ‘ 𝐾 ) ≠ 0 ) |
7 |
1 4 6
|
absdivd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐾 ∈ ℕ0 ) → ( abs ‘ ( ( 𝐴 ↑ 𝐾 ) / ( ! ‘ 𝐾 ) ) ) = ( ( abs ‘ ( 𝐴 ↑ 𝐾 ) ) / ( abs ‘ ( ! ‘ 𝐾 ) ) ) ) |
8 |
|
absexp |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐾 ∈ ℕ0 ) → ( abs ‘ ( 𝐴 ↑ 𝐾 ) ) = ( ( abs ‘ 𝐴 ) ↑ 𝐾 ) ) |
9 |
3
|
nnred |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐾 ∈ ℕ0 ) → ( ! ‘ 𝐾 ) ∈ ℝ ) |
10 |
3
|
nnnn0d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐾 ∈ ℕ0 ) → ( ! ‘ 𝐾 ) ∈ ℕ0 ) |
11 |
10
|
nn0ge0d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐾 ∈ ℕ0 ) → 0 ≤ ( ! ‘ 𝐾 ) ) |
12 |
9 11
|
absidd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐾 ∈ ℕ0 ) → ( abs ‘ ( ! ‘ 𝐾 ) ) = ( ! ‘ 𝐾 ) ) |
13 |
8 12
|
oveq12d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐾 ∈ ℕ0 ) → ( ( abs ‘ ( 𝐴 ↑ 𝐾 ) ) / ( abs ‘ ( ! ‘ 𝐾 ) ) ) = ( ( ( abs ‘ 𝐴 ) ↑ 𝐾 ) / ( ! ‘ 𝐾 ) ) ) |
14 |
7 13
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐾 ∈ ℕ0 ) → ( abs ‘ ( ( 𝐴 ↑ 𝐾 ) / ( ! ‘ 𝐾 ) ) ) = ( ( ( abs ‘ 𝐴 ) ↑ 𝐾 ) / ( ! ‘ 𝐾 ) ) ) |