Description: Closure of a term in the series expansion of the exponential function. (Contributed by Paul Chapman, 11-Sep-2007)
Ref | Expression | ||
---|---|---|---|
Assertion | eftcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐾 ∈ ℕ0 ) → ( ( 𝐴 ↑ 𝐾 ) / ( ! ‘ 𝐾 ) ) ∈ ℂ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | expcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐾 ∈ ℕ0 ) → ( 𝐴 ↑ 𝐾 ) ∈ ℂ ) | |
2 | faccl | ⊢ ( 𝐾 ∈ ℕ0 → ( ! ‘ 𝐾 ) ∈ ℕ ) | |
3 | 2 | nncnd | ⊢ ( 𝐾 ∈ ℕ0 → ( ! ‘ 𝐾 ) ∈ ℂ ) |
4 | 3 | adantl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐾 ∈ ℕ0 ) → ( ! ‘ 𝐾 ) ∈ ℂ ) |
5 | facne0 | ⊢ ( 𝐾 ∈ ℕ0 → ( ! ‘ 𝐾 ) ≠ 0 ) | |
6 | 5 | adantl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐾 ∈ ℕ0 ) → ( ! ‘ 𝐾 ) ≠ 0 ) |
7 | 1 4 6 | divcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐾 ∈ ℕ0 ) → ( ( 𝐴 ↑ 𝐾 ) / ( ! ‘ 𝐾 ) ) ∈ ℂ ) |