Metamath Proof Explorer


Theorem eftcl

Description: Closure of a term in the series expansion of the exponential function. (Contributed by Paul Chapman, 11-Sep-2007)

Ref Expression
Assertion eftcl ( ( 𝐴 ∈ ℂ ∧ 𝐾 ∈ ℕ0 ) → ( ( 𝐴𝐾 ) / ( ! ‘ 𝐾 ) ) ∈ ℂ )

Proof

Step Hyp Ref Expression
1 expcl ( ( 𝐴 ∈ ℂ ∧ 𝐾 ∈ ℕ0 ) → ( 𝐴𝐾 ) ∈ ℂ )
2 faccl ( 𝐾 ∈ ℕ0 → ( ! ‘ 𝐾 ) ∈ ℕ )
3 2 nncnd ( 𝐾 ∈ ℕ0 → ( ! ‘ 𝐾 ) ∈ ℂ )
4 3 adantl ( ( 𝐴 ∈ ℂ ∧ 𝐾 ∈ ℕ0 ) → ( ! ‘ 𝐾 ) ∈ ℂ )
5 facne0 ( 𝐾 ∈ ℕ0 → ( ! ‘ 𝐾 ) ≠ 0 )
6 5 adantl ( ( 𝐴 ∈ ℂ ∧ 𝐾 ∈ ℕ0 ) → ( ! ‘ 𝐾 ) ≠ 0 )
7 1 4 6 divcld ( ( 𝐴 ∈ ℂ ∧ 𝐾 ∈ ℕ0 ) → ( ( 𝐴𝐾 ) / ( ! ‘ 𝐾 ) ) ∈ ℂ )