Description: Closure of a term in the series expansion of the exponential function. (Contributed by Paul Chapman, 11-Sep-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eftcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐾 ∈ ℕ0 ) → ( ( 𝐴 ↑ 𝐾 ) / ( ! ‘ 𝐾 ) ) ∈ ℂ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | expcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐾 ∈ ℕ0 ) → ( 𝐴 ↑ 𝐾 ) ∈ ℂ ) | |
| 2 | faccl | ⊢ ( 𝐾 ∈ ℕ0 → ( ! ‘ 𝐾 ) ∈ ℕ ) | |
| 3 | 2 | nncnd | ⊢ ( 𝐾 ∈ ℕ0 → ( ! ‘ 𝐾 ) ∈ ℂ ) |
| 4 | 3 | adantl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐾 ∈ ℕ0 ) → ( ! ‘ 𝐾 ) ∈ ℂ ) |
| 5 | facne0 | ⊢ ( 𝐾 ∈ ℕ0 → ( ! ‘ 𝐾 ) ≠ 0 ) | |
| 6 | 5 | adantl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐾 ∈ ℕ0 ) → ( ! ‘ 𝐾 ) ≠ 0 ) |
| 7 | 1 4 6 | divcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐾 ∈ ℕ0 ) → ( ( 𝐴 ↑ 𝐾 ) / ( ! ‘ 𝐾 ) ) ∈ ℂ ) |