Step |
Hyp |
Ref |
Expression |
1 |
|
eftl.1 |
⊢ 𝐹 = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) |
2 |
|
eftl.2 |
⊢ 𝐺 = ( 𝑛 ∈ ℕ0 ↦ ( ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) |
3 |
|
eftl.3 |
⊢ 𝐻 = ( 𝑛 ∈ ℕ0 ↦ ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) / ( ! ‘ 𝑀 ) ) · ( ( 1 / ( 𝑀 + 1 ) ) ↑ 𝑛 ) ) ) |
4 |
|
eftl.4 |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
5 |
|
eftl.5 |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
6 |
|
eftl.6 |
⊢ ( 𝜑 → ( abs ‘ 𝐴 ) ≤ 1 ) |
7 |
4
|
nnnn0d |
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
8 |
1
|
eftlcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
9 |
5 7 8
|
syl2anc |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
10 |
9
|
abscld |
⊢ ( 𝜑 → ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) |
11 |
5
|
abscld |
⊢ ( 𝜑 → ( abs ‘ 𝐴 ) ∈ ℝ ) |
12 |
2
|
reeftlcl |
⊢ ( ( ( abs ‘ 𝐴 ) ∈ ℝ ∧ 𝑀 ∈ ℕ0 ) → Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝐺 ‘ 𝑘 ) ∈ ℝ ) |
13 |
11 7 12
|
syl2anc |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝐺 ‘ 𝑘 ) ∈ ℝ ) |
14 |
11 7
|
reexpcld |
⊢ ( 𝜑 → ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) ∈ ℝ ) |
15 |
|
peano2nn0 |
⊢ ( 𝑀 ∈ ℕ0 → ( 𝑀 + 1 ) ∈ ℕ0 ) |
16 |
7 15
|
syl |
⊢ ( 𝜑 → ( 𝑀 + 1 ) ∈ ℕ0 ) |
17 |
16
|
nn0red |
⊢ ( 𝜑 → ( 𝑀 + 1 ) ∈ ℝ ) |
18 |
7
|
faccld |
⊢ ( 𝜑 → ( ! ‘ 𝑀 ) ∈ ℕ ) |
19 |
18 4
|
nnmulcld |
⊢ ( 𝜑 → ( ( ! ‘ 𝑀 ) · 𝑀 ) ∈ ℕ ) |
20 |
17 19
|
nndivred |
⊢ ( 𝜑 → ( ( 𝑀 + 1 ) / ( ( ! ‘ 𝑀 ) · 𝑀 ) ) ∈ ℝ ) |
21 |
14 20
|
remulcld |
⊢ ( 𝜑 → ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) · ( ( 𝑀 + 1 ) / ( ( ! ‘ 𝑀 ) · 𝑀 ) ) ) ∈ ℝ ) |
22 |
|
eqid |
⊢ ( ℤ≥ ‘ 𝑀 ) = ( ℤ≥ ‘ 𝑀 ) |
23 |
4
|
nnzd |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
24 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) |
25 |
|
eluznn0 |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑘 ∈ ℕ0 ) |
26 |
7 25
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑘 ∈ ℕ0 ) |
27 |
1
|
eftval |
⊢ ( 𝑘 ∈ ℕ0 → ( 𝐹 ‘ 𝑘 ) = ( ( 𝐴 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
28 |
27
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑘 ) = ( ( 𝐴 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
29 |
|
eftcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ∈ ℂ ) |
30 |
5 29
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ∈ ℂ ) |
31 |
28 30
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
32 |
26 31
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
33 |
1
|
eftlcvg |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) |
34 |
5 7 33
|
syl2anc |
⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) |
35 |
22 23 24 32 34
|
isumclim2 |
⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ⇝ Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝐹 ‘ 𝑘 ) ) |
36 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐺 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑘 ) ) |
37 |
2
|
eftval |
⊢ ( 𝑘 ∈ ℕ0 → ( 𝐺 ‘ 𝑘 ) = ( ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
38 |
37
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐺 ‘ 𝑘 ) = ( ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
39 |
|
reeftcl |
⊢ ( ( ( abs ‘ 𝐴 ) ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) → ( ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ∈ ℝ ) |
40 |
11 39
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ∈ ℝ ) |
41 |
38 40
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐺 ‘ 𝑘 ) ∈ ℝ ) |
42 |
26 41
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐺 ‘ 𝑘 ) ∈ ℝ ) |
43 |
42
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) |
44 |
11
|
recnd |
⊢ ( 𝜑 → ( abs ‘ 𝐴 ) ∈ ℂ ) |
45 |
2
|
eftlcvg |
⊢ ( ( ( abs ‘ 𝐴 ) ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → seq 𝑀 ( + , 𝐺 ) ∈ dom ⇝ ) |
46 |
44 7 45
|
syl2anc |
⊢ ( 𝜑 → seq 𝑀 ( + , 𝐺 ) ∈ dom ⇝ ) |
47 |
22 23 36 43 46
|
isumclim2 |
⊢ ( 𝜑 → seq 𝑀 ( + , 𝐺 ) ⇝ Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝐺 ‘ 𝑘 ) ) |
48 |
|
eftabs |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( abs ‘ ( ( 𝐴 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) = ( ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
49 |
5 48
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( abs ‘ ( ( 𝐴 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) = ( ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
50 |
28
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) = ( abs ‘ ( ( 𝐴 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) |
51 |
49 50 38
|
3eqtr4rd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐺 ‘ 𝑘 ) = ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
52 |
26 51
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐺 ‘ 𝑘 ) = ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
53 |
22 35 47 23 32 52
|
iserabs |
⊢ ( 𝜑 → ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝐹 ‘ 𝑘 ) ) ≤ Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝐺 ‘ 𝑘 ) ) |
54 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
55 |
|
0zd |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
56 |
4
|
nncnd |
⊢ ( 𝜑 → 𝑀 ∈ ℂ ) |
57 |
|
nn0cn |
⊢ ( 𝑗 ∈ ℕ0 → 𝑗 ∈ ℂ ) |
58 |
|
nn0ex |
⊢ ℕ0 ∈ V |
59 |
58
|
mptex |
⊢ ( 𝑛 ∈ ℕ0 ↦ ( ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ∈ V |
60 |
2 59
|
eqeltri |
⊢ 𝐺 ∈ V |
61 |
60
|
shftval4 |
⊢ ( ( 𝑀 ∈ ℂ ∧ 𝑗 ∈ ℂ ) → ( ( 𝐺 shift - 𝑀 ) ‘ 𝑗 ) = ( 𝐺 ‘ ( 𝑀 + 𝑗 ) ) ) |
62 |
56 57 61
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 𝐺 shift - 𝑀 ) ‘ 𝑗 ) = ( 𝐺 ‘ ( 𝑀 + 𝑗 ) ) ) |
63 |
|
nn0addcl |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑗 ∈ ℕ0 ) → ( 𝑀 + 𝑗 ) ∈ ℕ0 ) |
64 |
7 63
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 𝑀 + 𝑗 ) ∈ ℕ0 ) |
65 |
2
|
eftval |
⊢ ( ( 𝑀 + 𝑗 ) ∈ ℕ0 → ( 𝐺 ‘ ( 𝑀 + 𝑗 ) ) = ( ( ( abs ‘ 𝐴 ) ↑ ( 𝑀 + 𝑗 ) ) / ( ! ‘ ( 𝑀 + 𝑗 ) ) ) ) |
66 |
64 65
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 𝐺 ‘ ( 𝑀 + 𝑗 ) ) = ( ( ( abs ‘ 𝐴 ) ↑ ( 𝑀 + 𝑗 ) ) / ( ! ‘ ( 𝑀 + 𝑗 ) ) ) ) |
67 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( abs ‘ 𝐴 ) ∈ ℝ ) |
68 |
|
reeftcl |
⊢ ( ( ( abs ‘ 𝐴 ) ∈ ℝ ∧ ( 𝑀 + 𝑗 ) ∈ ℕ0 ) → ( ( ( abs ‘ 𝐴 ) ↑ ( 𝑀 + 𝑗 ) ) / ( ! ‘ ( 𝑀 + 𝑗 ) ) ) ∈ ℝ ) |
69 |
67 64 68
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( ( abs ‘ 𝐴 ) ↑ ( 𝑀 + 𝑗 ) ) / ( ! ‘ ( 𝑀 + 𝑗 ) ) ) ∈ ℝ ) |
70 |
66 69
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 𝐺 ‘ ( 𝑀 + 𝑗 ) ) ∈ ℝ ) |
71 |
|
oveq2 |
⊢ ( 𝑛 = 𝑗 → ( ( 1 / ( 𝑀 + 1 ) ) ↑ 𝑛 ) = ( ( 1 / ( 𝑀 + 1 ) ) ↑ 𝑗 ) ) |
72 |
71
|
oveq2d |
⊢ ( 𝑛 = 𝑗 → ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) / ( ! ‘ 𝑀 ) ) · ( ( 1 / ( 𝑀 + 1 ) ) ↑ 𝑛 ) ) = ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) / ( ! ‘ 𝑀 ) ) · ( ( 1 / ( 𝑀 + 1 ) ) ↑ 𝑗 ) ) ) |
73 |
|
ovex |
⊢ ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) / ( ! ‘ 𝑀 ) ) · ( ( 1 / ( 𝑀 + 1 ) ) ↑ 𝑗 ) ) ∈ V |
74 |
72 3 73
|
fvmpt |
⊢ ( 𝑗 ∈ ℕ0 → ( 𝐻 ‘ 𝑗 ) = ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) / ( ! ‘ 𝑀 ) ) · ( ( 1 / ( 𝑀 + 1 ) ) ↑ 𝑗 ) ) ) |
75 |
74
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 𝐻 ‘ 𝑗 ) = ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) / ( ! ‘ 𝑀 ) ) · ( ( 1 / ( 𝑀 + 1 ) ) ↑ 𝑗 ) ) ) |
76 |
14 18
|
nndivred |
⊢ ( 𝜑 → ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) / ( ! ‘ 𝑀 ) ) ∈ ℝ ) |
77 |
76
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) / ( ! ‘ 𝑀 ) ) ∈ ℝ ) |
78 |
4
|
peano2nnd |
⊢ ( 𝜑 → ( 𝑀 + 1 ) ∈ ℕ ) |
79 |
78
|
nnrecred |
⊢ ( 𝜑 → ( 1 / ( 𝑀 + 1 ) ) ∈ ℝ ) |
80 |
|
reexpcl |
⊢ ( ( ( 1 / ( 𝑀 + 1 ) ) ∈ ℝ ∧ 𝑗 ∈ ℕ0 ) → ( ( 1 / ( 𝑀 + 1 ) ) ↑ 𝑗 ) ∈ ℝ ) |
81 |
79 80
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 1 / ( 𝑀 + 1 ) ) ↑ 𝑗 ) ∈ ℝ ) |
82 |
77 81
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) / ( ! ‘ 𝑀 ) ) · ( ( 1 / ( 𝑀 + 1 ) ) ↑ 𝑗 ) ) ∈ ℝ ) |
83 |
67 64
|
reexpcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( abs ‘ 𝐴 ) ↑ ( 𝑀 + 𝑗 ) ) ∈ ℝ ) |
84 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) ∈ ℝ ) |
85 |
64
|
faccld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ! ‘ ( 𝑀 + 𝑗 ) ) ∈ ℕ ) |
86 |
85
|
nnred |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ! ‘ ( 𝑀 + 𝑗 ) ) ∈ ℝ ) |
87 |
86 82
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( ! ‘ ( 𝑀 + 𝑗 ) ) · ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) / ( ! ‘ 𝑀 ) ) · ( ( 1 / ( 𝑀 + 1 ) ) ↑ 𝑗 ) ) ) ∈ ℝ ) |
88 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → 𝑀 ∈ ℕ0 ) |
89 |
|
uzid |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
90 |
23 89
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
91 |
|
uzaddcl |
⊢ ( ( 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑗 ∈ ℕ0 ) → ( 𝑀 + 𝑗 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
92 |
90 91
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 𝑀 + 𝑗 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
93 |
5
|
absge0d |
⊢ ( 𝜑 → 0 ≤ ( abs ‘ 𝐴 ) ) |
94 |
93
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → 0 ≤ ( abs ‘ 𝐴 ) ) |
95 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( abs ‘ 𝐴 ) ≤ 1 ) |
96 |
67 88 92 94 95
|
leexp2rd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( abs ‘ 𝐴 ) ↑ ( 𝑀 + 𝑗 ) ) ≤ ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) ) |
97 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ! ‘ 𝑀 ) ∈ ℕ ) |
98 |
|
nnexpcl |
⊢ ( ( ( 𝑀 + 1 ) ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) → ( ( 𝑀 + 1 ) ↑ 𝑗 ) ∈ ℕ ) |
99 |
78 98
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 𝑀 + 1 ) ↑ 𝑗 ) ∈ ℕ ) |
100 |
97 99
|
nnmulcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( ! ‘ 𝑀 ) · ( ( 𝑀 + 1 ) ↑ 𝑗 ) ) ∈ ℕ ) |
101 |
100
|
nnred |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( ! ‘ 𝑀 ) · ( ( 𝑀 + 1 ) ↑ 𝑗 ) ) ∈ ℝ ) |
102 |
11 7 93
|
expge0d |
⊢ ( 𝜑 → 0 ≤ ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) ) |
103 |
14 102
|
jca |
⊢ ( 𝜑 → ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) ∈ ℝ ∧ 0 ≤ ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) ) ) |
104 |
103
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) ∈ ℝ ∧ 0 ≤ ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) ) ) |
105 |
|
faclbnd6 |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑗 ∈ ℕ0 ) → ( ( ! ‘ 𝑀 ) · ( ( 𝑀 + 1 ) ↑ 𝑗 ) ) ≤ ( ! ‘ ( 𝑀 + 𝑗 ) ) ) |
106 |
7 105
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( ! ‘ 𝑀 ) · ( ( 𝑀 + 1 ) ↑ 𝑗 ) ) ≤ ( ! ‘ ( 𝑀 + 𝑗 ) ) ) |
107 |
|
lemul1a |
⊢ ( ( ( ( ( ! ‘ 𝑀 ) · ( ( 𝑀 + 1 ) ↑ 𝑗 ) ) ∈ ℝ ∧ ( ! ‘ ( 𝑀 + 𝑗 ) ) ∈ ℝ ∧ ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) ∈ ℝ ∧ 0 ≤ ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) ) ) ∧ ( ( ! ‘ 𝑀 ) · ( ( 𝑀 + 1 ) ↑ 𝑗 ) ) ≤ ( ! ‘ ( 𝑀 + 𝑗 ) ) ) → ( ( ( ! ‘ 𝑀 ) · ( ( 𝑀 + 1 ) ↑ 𝑗 ) ) · ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) ) ≤ ( ( ! ‘ ( 𝑀 + 𝑗 ) ) · ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) ) ) |
108 |
101 86 104 106 107
|
syl31anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( ( ! ‘ 𝑀 ) · ( ( 𝑀 + 1 ) ↑ 𝑗 ) ) · ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) ) ≤ ( ( ! ‘ ( 𝑀 + 𝑗 ) ) · ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) ) ) |
109 |
86 84
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( ! ‘ ( 𝑀 + 𝑗 ) ) · ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) ) ∈ ℝ ) |
110 |
100
|
nnrpd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( ! ‘ 𝑀 ) · ( ( 𝑀 + 1 ) ↑ 𝑗 ) ) ∈ ℝ+ ) |
111 |
84 109 110
|
lemuldiv2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( ( ( ! ‘ 𝑀 ) · ( ( 𝑀 + 1 ) ↑ 𝑗 ) ) · ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) ) ≤ ( ( ! ‘ ( 𝑀 + 𝑗 ) ) · ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) ) ↔ ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) ≤ ( ( ( ! ‘ ( 𝑀 + 𝑗 ) ) · ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) ) / ( ( ! ‘ 𝑀 ) · ( ( 𝑀 + 1 ) ↑ 𝑗 ) ) ) ) ) |
112 |
108 111
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) ≤ ( ( ( ! ‘ ( 𝑀 + 𝑗 ) ) · ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) ) / ( ( ! ‘ 𝑀 ) · ( ( 𝑀 + 1 ) ↑ 𝑗 ) ) ) ) |
113 |
85
|
nncnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ! ‘ ( 𝑀 + 𝑗 ) ) ∈ ℂ ) |
114 |
14
|
recnd |
⊢ ( 𝜑 → ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) ∈ ℂ ) |
115 |
114
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) ∈ ℂ ) |
116 |
100
|
nncnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( ! ‘ 𝑀 ) · ( ( 𝑀 + 1 ) ↑ 𝑗 ) ) ∈ ℂ ) |
117 |
100
|
nnne0d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( ! ‘ 𝑀 ) · ( ( 𝑀 + 1 ) ↑ 𝑗 ) ) ≠ 0 ) |
118 |
113 115 116 117
|
divassd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( ( ! ‘ ( 𝑀 + 𝑗 ) ) · ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) ) / ( ( ! ‘ 𝑀 ) · ( ( 𝑀 + 1 ) ↑ 𝑗 ) ) ) = ( ( ! ‘ ( 𝑀 + 𝑗 ) ) · ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) / ( ( ! ‘ 𝑀 ) · ( ( 𝑀 + 1 ) ↑ 𝑗 ) ) ) ) ) |
119 |
78
|
nncnd |
⊢ ( 𝜑 → ( 𝑀 + 1 ) ∈ ℂ ) |
120 |
119
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 𝑀 + 1 ) ∈ ℂ ) |
121 |
78
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 𝑀 + 1 ) ∈ ℕ ) |
122 |
121
|
nnne0d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 𝑀 + 1 ) ≠ 0 ) |
123 |
|
nn0z |
⊢ ( 𝑗 ∈ ℕ0 → 𝑗 ∈ ℤ ) |
124 |
123
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → 𝑗 ∈ ℤ ) |
125 |
120 122 124
|
exprecd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 1 / ( 𝑀 + 1 ) ) ↑ 𝑗 ) = ( 1 / ( ( 𝑀 + 1 ) ↑ 𝑗 ) ) ) |
126 |
125
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) / ( ! ‘ 𝑀 ) ) · ( ( 1 / ( 𝑀 + 1 ) ) ↑ 𝑗 ) ) = ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) / ( ! ‘ 𝑀 ) ) · ( 1 / ( ( 𝑀 + 1 ) ↑ 𝑗 ) ) ) ) |
127 |
76
|
recnd |
⊢ ( 𝜑 → ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) / ( ! ‘ 𝑀 ) ) ∈ ℂ ) |
128 |
127
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) / ( ! ‘ 𝑀 ) ) ∈ ℂ ) |
129 |
99
|
nncnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 𝑀 + 1 ) ↑ 𝑗 ) ∈ ℂ ) |
130 |
99
|
nnne0d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 𝑀 + 1 ) ↑ 𝑗 ) ≠ 0 ) |
131 |
128 129 130
|
divrecd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) / ( ! ‘ 𝑀 ) ) / ( ( 𝑀 + 1 ) ↑ 𝑗 ) ) = ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) / ( ! ‘ 𝑀 ) ) · ( 1 / ( ( 𝑀 + 1 ) ↑ 𝑗 ) ) ) ) |
132 |
18
|
nncnd |
⊢ ( 𝜑 → ( ! ‘ 𝑀 ) ∈ ℂ ) |
133 |
132
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ! ‘ 𝑀 ) ∈ ℂ ) |
134 |
|
facne0 |
⊢ ( 𝑀 ∈ ℕ0 → ( ! ‘ 𝑀 ) ≠ 0 ) |
135 |
7 134
|
syl |
⊢ ( 𝜑 → ( ! ‘ 𝑀 ) ≠ 0 ) |
136 |
135
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ! ‘ 𝑀 ) ≠ 0 ) |
137 |
115 133 129 136 130
|
divdiv1d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) / ( ! ‘ 𝑀 ) ) / ( ( 𝑀 + 1 ) ↑ 𝑗 ) ) = ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) / ( ( ! ‘ 𝑀 ) · ( ( 𝑀 + 1 ) ↑ 𝑗 ) ) ) ) |
138 |
126 131 137
|
3eqtr2rd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) / ( ( ! ‘ 𝑀 ) · ( ( 𝑀 + 1 ) ↑ 𝑗 ) ) ) = ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) / ( ! ‘ 𝑀 ) ) · ( ( 1 / ( 𝑀 + 1 ) ) ↑ 𝑗 ) ) ) |
139 |
138
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( ! ‘ ( 𝑀 + 𝑗 ) ) · ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) / ( ( ! ‘ 𝑀 ) · ( ( 𝑀 + 1 ) ↑ 𝑗 ) ) ) ) = ( ( ! ‘ ( 𝑀 + 𝑗 ) ) · ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) / ( ! ‘ 𝑀 ) ) · ( ( 1 / ( 𝑀 + 1 ) ) ↑ 𝑗 ) ) ) ) |
140 |
118 139
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( ( ! ‘ ( 𝑀 + 𝑗 ) ) · ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) ) / ( ( ! ‘ 𝑀 ) · ( ( 𝑀 + 1 ) ↑ 𝑗 ) ) ) = ( ( ! ‘ ( 𝑀 + 𝑗 ) ) · ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) / ( ! ‘ 𝑀 ) ) · ( ( 1 / ( 𝑀 + 1 ) ) ↑ 𝑗 ) ) ) ) |
141 |
112 140
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) ≤ ( ( ! ‘ ( 𝑀 + 𝑗 ) ) · ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) / ( ! ‘ 𝑀 ) ) · ( ( 1 / ( 𝑀 + 1 ) ) ↑ 𝑗 ) ) ) ) |
142 |
83 84 87 96 141
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( abs ‘ 𝐴 ) ↑ ( 𝑀 + 𝑗 ) ) ≤ ( ( ! ‘ ( 𝑀 + 𝑗 ) ) · ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) / ( ! ‘ 𝑀 ) ) · ( ( 1 / ( 𝑀 + 1 ) ) ↑ 𝑗 ) ) ) ) |
143 |
85
|
nngt0d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → 0 < ( ! ‘ ( 𝑀 + 𝑗 ) ) ) |
144 |
|
ledivmul |
⊢ ( ( ( ( abs ‘ 𝐴 ) ↑ ( 𝑀 + 𝑗 ) ) ∈ ℝ ∧ ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) / ( ! ‘ 𝑀 ) ) · ( ( 1 / ( 𝑀 + 1 ) ) ↑ 𝑗 ) ) ∈ ℝ ∧ ( ( ! ‘ ( 𝑀 + 𝑗 ) ) ∈ ℝ ∧ 0 < ( ! ‘ ( 𝑀 + 𝑗 ) ) ) ) → ( ( ( ( abs ‘ 𝐴 ) ↑ ( 𝑀 + 𝑗 ) ) / ( ! ‘ ( 𝑀 + 𝑗 ) ) ) ≤ ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) / ( ! ‘ 𝑀 ) ) · ( ( 1 / ( 𝑀 + 1 ) ) ↑ 𝑗 ) ) ↔ ( ( abs ‘ 𝐴 ) ↑ ( 𝑀 + 𝑗 ) ) ≤ ( ( ! ‘ ( 𝑀 + 𝑗 ) ) · ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) / ( ! ‘ 𝑀 ) ) · ( ( 1 / ( 𝑀 + 1 ) ) ↑ 𝑗 ) ) ) ) ) |
145 |
83 82 86 143 144
|
syl112anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( ( ( abs ‘ 𝐴 ) ↑ ( 𝑀 + 𝑗 ) ) / ( ! ‘ ( 𝑀 + 𝑗 ) ) ) ≤ ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) / ( ! ‘ 𝑀 ) ) · ( ( 1 / ( 𝑀 + 1 ) ) ↑ 𝑗 ) ) ↔ ( ( abs ‘ 𝐴 ) ↑ ( 𝑀 + 𝑗 ) ) ≤ ( ( ! ‘ ( 𝑀 + 𝑗 ) ) · ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) / ( ! ‘ 𝑀 ) ) · ( ( 1 / ( 𝑀 + 1 ) ) ↑ 𝑗 ) ) ) ) ) |
146 |
142 145
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( ( abs ‘ 𝐴 ) ↑ ( 𝑀 + 𝑗 ) ) / ( ! ‘ ( 𝑀 + 𝑗 ) ) ) ≤ ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) / ( ! ‘ 𝑀 ) ) · ( ( 1 / ( 𝑀 + 1 ) ) ↑ 𝑗 ) ) ) |
147 |
66 146
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 𝐺 ‘ ( 𝑀 + 𝑗 ) ) ≤ ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) / ( ! ‘ 𝑀 ) ) · ( ( 1 / ( 𝑀 + 1 ) ) ↑ 𝑗 ) ) ) |
148 |
|
0z |
⊢ 0 ∈ ℤ |
149 |
23
|
znegcld |
⊢ ( 𝜑 → - 𝑀 ∈ ℤ ) |
150 |
60
|
seqshft |
⊢ ( ( 0 ∈ ℤ ∧ - 𝑀 ∈ ℤ ) → seq 0 ( + , ( 𝐺 shift - 𝑀 ) ) = ( seq ( 0 − - 𝑀 ) ( + , 𝐺 ) shift - 𝑀 ) ) |
151 |
148 149 150
|
sylancr |
⊢ ( 𝜑 → seq 0 ( + , ( 𝐺 shift - 𝑀 ) ) = ( seq ( 0 − - 𝑀 ) ( + , 𝐺 ) shift - 𝑀 ) ) |
152 |
|
0cn |
⊢ 0 ∈ ℂ |
153 |
|
subneg |
⊢ ( ( 0 ∈ ℂ ∧ 𝑀 ∈ ℂ ) → ( 0 − - 𝑀 ) = ( 0 + 𝑀 ) ) |
154 |
152 153
|
mpan |
⊢ ( 𝑀 ∈ ℂ → ( 0 − - 𝑀 ) = ( 0 + 𝑀 ) ) |
155 |
|
addid2 |
⊢ ( 𝑀 ∈ ℂ → ( 0 + 𝑀 ) = 𝑀 ) |
156 |
154 155
|
eqtrd |
⊢ ( 𝑀 ∈ ℂ → ( 0 − - 𝑀 ) = 𝑀 ) |
157 |
56 156
|
syl |
⊢ ( 𝜑 → ( 0 − - 𝑀 ) = 𝑀 ) |
158 |
157
|
seqeq1d |
⊢ ( 𝜑 → seq ( 0 − - 𝑀 ) ( + , 𝐺 ) = seq 𝑀 ( + , 𝐺 ) ) |
159 |
158 47
|
eqbrtrd |
⊢ ( 𝜑 → seq ( 0 − - 𝑀 ) ( + , 𝐺 ) ⇝ Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝐺 ‘ 𝑘 ) ) |
160 |
|
seqex |
⊢ seq ( 0 − - 𝑀 ) ( + , 𝐺 ) ∈ V |
161 |
|
climshft |
⊢ ( ( - 𝑀 ∈ ℤ ∧ seq ( 0 − - 𝑀 ) ( + , 𝐺 ) ∈ V ) → ( ( seq ( 0 − - 𝑀 ) ( + , 𝐺 ) shift - 𝑀 ) ⇝ Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝐺 ‘ 𝑘 ) ↔ seq ( 0 − - 𝑀 ) ( + , 𝐺 ) ⇝ Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝐺 ‘ 𝑘 ) ) ) |
162 |
149 160 161
|
sylancl |
⊢ ( 𝜑 → ( ( seq ( 0 − - 𝑀 ) ( + , 𝐺 ) shift - 𝑀 ) ⇝ Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝐺 ‘ 𝑘 ) ↔ seq ( 0 − - 𝑀 ) ( + , 𝐺 ) ⇝ Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝐺 ‘ 𝑘 ) ) ) |
163 |
159 162
|
mpbird |
⊢ ( 𝜑 → ( seq ( 0 − - 𝑀 ) ( + , 𝐺 ) shift - 𝑀 ) ⇝ Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝐺 ‘ 𝑘 ) ) |
164 |
|
ovex |
⊢ ( seq ( 0 − - 𝑀 ) ( + , 𝐺 ) shift - 𝑀 ) ∈ V |
165 |
|
sumex |
⊢ Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝐺 ‘ 𝑘 ) ∈ V |
166 |
164 165
|
breldm |
⊢ ( ( seq ( 0 − - 𝑀 ) ( + , 𝐺 ) shift - 𝑀 ) ⇝ Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝐺 ‘ 𝑘 ) → ( seq ( 0 − - 𝑀 ) ( + , 𝐺 ) shift - 𝑀 ) ∈ dom ⇝ ) |
167 |
163 166
|
syl |
⊢ ( 𝜑 → ( seq ( 0 − - 𝑀 ) ( + , 𝐺 ) shift - 𝑀 ) ∈ dom ⇝ ) |
168 |
151 167
|
eqeltrd |
⊢ ( 𝜑 → seq 0 ( + , ( 𝐺 shift - 𝑀 ) ) ∈ dom ⇝ ) |
169 |
4
|
nnge1d |
⊢ ( 𝜑 → 1 ≤ 𝑀 ) |
170 |
|
1nn |
⊢ 1 ∈ ℕ |
171 |
|
nnleltp1 |
⊢ ( ( 1 ∈ ℕ ∧ 𝑀 ∈ ℕ ) → ( 1 ≤ 𝑀 ↔ 1 < ( 𝑀 + 1 ) ) ) |
172 |
170 4 171
|
sylancr |
⊢ ( 𝜑 → ( 1 ≤ 𝑀 ↔ 1 < ( 𝑀 + 1 ) ) ) |
173 |
169 172
|
mpbid |
⊢ ( 𝜑 → 1 < ( 𝑀 + 1 ) ) |
174 |
16
|
nn0ge0d |
⊢ ( 𝜑 → 0 ≤ ( 𝑀 + 1 ) ) |
175 |
17 174
|
absidd |
⊢ ( 𝜑 → ( abs ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) |
176 |
173 175
|
breqtrrd |
⊢ ( 𝜑 → 1 < ( abs ‘ ( 𝑀 + 1 ) ) ) |
177 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / ( 𝑀 + 1 ) ) ↑ 𝑛 ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / ( 𝑀 + 1 ) ) ↑ 𝑛 ) ) |
178 |
|
ovex |
⊢ ( ( 1 / ( 𝑀 + 1 ) ) ↑ 𝑗 ) ∈ V |
179 |
71 177 178
|
fvmpt |
⊢ ( 𝑗 ∈ ℕ0 → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / ( 𝑀 + 1 ) ) ↑ 𝑛 ) ) ‘ 𝑗 ) = ( ( 1 / ( 𝑀 + 1 ) ) ↑ 𝑗 ) ) |
180 |
179
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / ( 𝑀 + 1 ) ) ↑ 𝑛 ) ) ‘ 𝑗 ) = ( ( 1 / ( 𝑀 + 1 ) ) ↑ 𝑗 ) ) |
181 |
119 176 180
|
georeclim |
⊢ ( 𝜑 → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / ( 𝑀 + 1 ) ) ↑ 𝑛 ) ) ) ⇝ ( ( 𝑀 + 1 ) / ( ( 𝑀 + 1 ) − 1 ) ) ) |
182 |
81
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 1 / ( 𝑀 + 1 ) ) ↑ 𝑗 ) ∈ ℂ ) |
183 |
180 182
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / ( 𝑀 + 1 ) ) ↑ 𝑛 ) ) ‘ 𝑗 ) ∈ ℂ ) |
184 |
180
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) / ( ! ‘ 𝑀 ) ) · ( ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / ( 𝑀 + 1 ) ) ↑ 𝑛 ) ) ‘ 𝑗 ) ) = ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) / ( ! ‘ 𝑀 ) ) · ( ( 1 / ( 𝑀 + 1 ) ) ↑ 𝑗 ) ) ) |
185 |
75 184
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 𝐻 ‘ 𝑗 ) = ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) / ( ! ‘ 𝑀 ) ) · ( ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / ( 𝑀 + 1 ) ) ↑ 𝑛 ) ) ‘ 𝑗 ) ) ) |
186 |
54 55 127 181 183 185
|
isermulc2 |
⊢ ( 𝜑 → seq 0 ( + , 𝐻 ) ⇝ ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) / ( ! ‘ 𝑀 ) ) · ( ( 𝑀 + 1 ) / ( ( 𝑀 + 1 ) − 1 ) ) ) ) |
187 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
188 |
|
pncan |
⊢ ( ( 𝑀 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑀 + 1 ) − 1 ) = 𝑀 ) |
189 |
56 187 188
|
sylancl |
⊢ ( 𝜑 → ( ( 𝑀 + 1 ) − 1 ) = 𝑀 ) |
190 |
189
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝑀 + 1 ) / ( ( 𝑀 + 1 ) − 1 ) ) = ( ( 𝑀 + 1 ) / 𝑀 ) ) |
191 |
190
|
oveq2d |
⊢ ( 𝜑 → ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) / ( ! ‘ 𝑀 ) ) · ( ( 𝑀 + 1 ) / ( ( 𝑀 + 1 ) − 1 ) ) ) = ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) / ( ! ‘ 𝑀 ) ) · ( ( 𝑀 + 1 ) / 𝑀 ) ) ) |
192 |
17 4
|
nndivred |
⊢ ( 𝜑 → ( ( 𝑀 + 1 ) / 𝑀 ) ∈ ℝ ) |
193 |
192
|
recnd |
⊢ ( 𝜑 → ( ( 𝑀 + 1 ) / 𝑀 ) ∈ ℂ ) |
194 |
114 193 132 135
|
div23d |
⊢ ( 𝜑 → ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) · ( ( 𝑀 + 1 ) / 𝑀 ) ) / ( ! ‘ 𝑀 ) ) = ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) / ( ! ‘ 𝑀 ) ) · ( ( 𝑀 + 1 ) / 𝑀 ) ) ) |
195 |
191 194
|
eqtr4d |
⊢ ( 𝜑 → ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) / ( ! ‘ 𝑀 ) ) · ( ( 𝑀 + 1 ) / ( ( 𝑀 + 1 ) − 1 ) ) ) = ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) · ( ( 𝑀 + 1 ) / 𝑀 ) ) / ( ! ‘ 𝑀 ) ) ) |
196 |
114 193 132 135
|
divassd |
⊢ ( 𝜑 → ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) · ( ( 𝑀 + 1 ) / 𝑀 ) ) / ( ! ‘ 𝑀 ) ) = ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) · ( ( ( 𝑀 + 1 ) / 𝑀 ) / ( ! ‘ 𝑀 ) ) ) ) |
197 |
4
|
nnne0d |
⊢ ( 𝜑 → 𝑀 ≠ 0 ) |
198 |
119 56 132 197 135
|
divdiv1d |
⊢ ( 𝜑 → ( ( ( 𝑀 + 1 ) / 𝑀 ) / ( ! ‘ 𝑀 ) ) = ( ( 𝑀 + 1 ) / ( 𝑀 · ( ! ‘ 𝑀 ) ) ) ) |
199 |
56 132
|
mulcomd |
⊢ ( 𝜑 → ( 𝑀 · ( ! ‘ 𝑀 ) ) = ( ( ! ‘ 𝑀 ) · 𝑀 ) ) |
200 |
199
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝑀 + 1 ) / ( 𝑀 · ( ! ‘ 𝑀 ) ) ) = ( ( 𝑀 + 1 ) / ( ( ! ‘ 𝑀 ) · 𝑀 ) ) ) |
201 |
198 200
|
eqtrd |
⊢ ( 𝜑 → ( ( ( 𝑀 + 1 ) / 𝑀 ) / ( ! ‘ 𝑀 ) ) = ( ( 𝑀 + 1 ) / ( ( ! ‘ 𝑀 ) · 𝑀 ) ) ) |
202 |
201
|
oveq2d |
⊢ ( 𝜑 → ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) · ( ( ( 𝑀 + 1 ) / 𝑀 ) / ( ! ‘ 𝑀 ) ) ) = ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) · ( ( 𝑀 + 1 ) / ( ( ! ‘ 𝑀 ) · 𝑀 ) ) ) ) |
203 |
195 196 202
|
3eqtrd |
⊢ ( 𝜑 → ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) / ( ! ‘ 𝑀 ) ) · ( ( 𝑀 + 1 ) / ( ( 𝑀 + 1 ) − 1 ) ) ) = ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) · ( ( 𝑀 + 1 ) / ( ( ! ‘ 𝑀 ) · 𝑀 ) ) ) ) |
204 |
186 203
|
breqtrd |
⊢ ( 𝜑 → seq 0 ( + , 𝐻 ) ⇝ ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) · ( ( 𝑀 + 1 ) / ( ( ! ‘ 𝑀 ) · 𝑀 ) ) ) ) |
205 |
|
seqex |
⊢ seq 0 ( + , 𝐻 ) ∈ V |
206 |
|
ovex |
⊢ ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) · ( ( 𝑀 + 1 ) / ( ( ! ‘ 𝑀 ) · 𝑀 ) ) ) ∈ V |
207 |
205 206
|
breldm |
⊢ ( seq 0 ( + , 𝐻 ) ⇝ ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) · ( ( 𝑀 + 1 ) / ( ( ! ‘ 𝑀 ) · 𝑀 ) ) ) → seq 0 ( + , 𝐻 ) ∈ dom ⇝ ) |
208 |
204 207
|
syl |
⊢ ( 𝜑 → seq 0 ( + , 𝐻 ) ∈ dom ⇝ ) |
209 |
54 55 62 70 75 82 147 168 208
|
isumle |
⊢ ( 𝜑 → Σ 𝑗 ∈ ℕ0 ( 𝐺 ‘ ( 𝑀 + 𝑗 ) ) ≤ Σ 𝑗 ∈ ℕ0 ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) / ( ! ‘ 𝑀 ) ) · ( ( 1 / ( 𝑀 + 1 ) ) ↑ 𝑗 ) ) ) |
210 |
|
eqid |
⊢ ( ℤ≥ ‘ ( 0 + 𝑀 ) ) = ( ℤ≥ ‘ ( 0 + 𝑀 ) ) |
211 |
|
fveq2 |
⊢ ( 𝑘 = ( 𝑀 + 𝑗 ) → ( 𝐺 ‘ 𝑘 ) = ( 𝐺 ‘ ( 𝑀 + 𝑗 ) ) ) |
212 |
56
|
addid2d |
⊢ ( 𝜑 → ( 0 + 𝑀 ) = 𝑀 ) |
213 |
212
|
fveq2d |
⊢ ( 𝜑 → ( ℤ≥ ‘ ( 0 + 𝑀 ) ) = ( ℤ≥ ‘ 𝑀 ) ) |
214 |
213
|
eleq2d |
⊢ ( 𝜑 → ( 𝑘 ∈ ( ℤ≥ ‘ ( 0 + 𝑀 ) ) ↔ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) ) |
215 |
214
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 0 + 𝑀 ) ) ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
216 |
215 43
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 0 + 𝑀 ) ) ) → ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) |
217 |
54 210 211 23 55 216
|
isumshft |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( ℤ≥ ‘ ( 0 + 𝑀 ) ) ( 𝐺 ‘ 𝑘 ) = Σ 𝑗 ∈ ℕ0 ( 𝐺 ‘ ( 𝑀 + 𝑗 ) ) ) |
218 |
213
|
sumeq1d |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( ℤ≥ ‘ ( 0 + 𝑀 ) ) ( 𝐺 ‘ 𝑘 ) = Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝐺 ‘ 𝑘 ) ) |
219 |
217 218
|
eqtr3d |
⊢ ( 𝜑 → Σ 𝑗 ∈ ℕ0 ( 𝐺 ‘ ( 𝑀 + 𝑗 ) ) = Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝐺 ‘ 𝑘 ) ) |
220 |
82
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) / ( ! ‘ 𝑀 ) ) · ( ( 1 / ( 𝑀 + 1 ) ) ↑ 𝑗 ) ) ∈ ℂ ) |
221 |
54 55 75 220 204
|
isumclim |
⊢ ( 𝜑 → Σ 𝑗 ∈ ℕ0 ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) / ( ! ‘ 𝑀 ) ) · ( ( 1 / ( 𝑀 + 1 ) ) ↑ 𝑗 ) ) = ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) · ( ( 𝑀 + 1 ) / ( ( ! ‘ 𝑀 ) · 𝑀 ) ) ) ) |
222 |
209 219 221
|
3brtr3d |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝐺 ‘ 𝑘 ) ≤ ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) · ( ( 𝑀 + 1 ) / ( ( ! ‘ 𝑀 ) · 𝑀 ) ) ) ) |
223 |
10 13 21 53 222
|
letrd |
⊢ ( 𝜑 → ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝐹 ‘ 𝑘 ) ) ≤ ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) · ( ( 𝑀 + 1 ) / ( ( ! ‘ 𝑀 ) · 𝑀 ) ) ) ) |