Metamath Proof Explorer


Theorem eftval

Description: The value of a term in the series expansion of the exponential function. (Contributed by Paul Chapman, 21-Aug-2007) (Revised by Mario Carneiro, 28-Apr-2014)

Ref Expression
Hypothesis eftval.1 𝐹 = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴𝑛 ) / ( ! ‘ 𝑛 ) ) )
Assertion eftval ( 𝑁 ∈ ℕ0 → ( 𝐹𝑁 ) = ( ( 𝐴𝑁 ) / ( ! ‘ 𝑁 ) ) )

Proof

Step Hyp Ref Expression
1 eftval.1 𝐹 = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴𝑛 ) / ( ! ‘ 𝑛 ) ) )
2 oveq2 ( 𝑛 = 𝑁 → ( 𝐴𝑛 ) = ( 𝐴𝑁 ) )
3 fveq2 ( 𝑛 = 𝑁 → ( ! ‘ 𝑛 ) = ( ! ‘ 𝑁 ) )
4 2 3 oveq12d ( 𝑛 = 𝑁 → ( ( 𝐴𝑛 ) / ( ! ‘ 𝑛 ) ) = ( ( 𝐴𝑁 ) / ( ! ‘ 𝑁 ) ) )
5 ovex ( ( 𝐴𝑁 ) / ( ! ‘ 𝑁 ) ) ∈ V
6 4 1 5 fvmpt ( 𝑁 ∈ ℕ0 → ( 𝐹𝑁 ) = ( ( 𝐴𝑁 ) / ( ! ‘ 𝑁 ) ) )