Metamath Proof Explorer


Theorem efval

Description: Value of the exponential function. (Contributed by NM, 8-Jan-2006) (Revised by Mario Carneiro, 10-Nov-2013)

Ref Expression
Assertion efval ( 𝐴 ∈ ℂ → ( exp ‘ 𝐴 ) = Σ 𝑘 ∈ ℕ0 ( ( 𝐴𝑘 ) / ( ! ‘ 𝑘 ) ) )

Proof

Step Hyp Ref Expression
1 oveq1 ( 𝑥 = 𝐴 → ( 𝑥𝑘 ) = ( 𝐴𝑘 ) )
2 1 oveq1d ( 𝑥 = 𝐴 → ( ( 𝑥𝑘 ) / ( ! ‘ 𝑘 ) ) = ( ( 𝐴𝑘 ) / ( ! ‘ 𝑘 ) ) )
3 2 sumeq2sdv ( 𝑥 = 𝐴 → Σ 𝑘 ∈ ℕ0 ( ( 𝑥𝑘 ) / ( ! ‘ 𝑘 ) ) = Σ 𝑘 ∈ ℕ0 ( ( 𝐴𝑘 ) / ( ! ‘ 𝑘 ) ) )
4 df-ef exp = ( 𝑥 ∈ ℂ ↦ Σ 𝑘 ∈ ℕ0 ( ( 𝑥𝑘 ) / ( ! ‘ 𝑘 ) ) )
5 sumex Σ 𝑘 ∈ ℕ0 ( ( 𝐴𝑘 ) / ( ! ‘ 𝑘 ) ) ∈ V
6 3 4 5 fvmpt ( 𝐴 ∈ ℂ → ( exp ‘ 𝐴 ) = Σ 𝑘 ∈ ℕ0 ( ( 𝐴𝑘 ) / ( ! ‘ 𝑘 ) ) )