Metamath Proof Explorer


Theorem efval2

Description: Value of the exponential function. (Contributed by Mario Carneiro, 29-Apr-2014)

Ref Expression
Hypothesis efcvg.1 𝐹 = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴𝑛 ) / ( ! ‘ 𝑛 ) ) )
Assertion efval2 ( 𝐴 ∈ ℂ → ( exp ‘ 𝐴 ) = Σ 𝑘 ∈ ℕ0 ( 𝐹𝑘 ) )

Proof

Step Hyp Ref Expression
1 efcvg.1 𝐹 = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴𝑛 ) / ( ! ‘ 𝑛 ) ) )
2 efval ( 𝐴 ∈ ℂ → ( exp ‘ 𝐴 ) = Σ 𝑘 ∈ ℕ0 ( ( 𝐴𝑘 ) / ( ! ‘ 𝑘 ) ) )
3 1 eftval ( 𝑘 ∈ ℕ0 → ( 𝐹𝑘 ) = ( ( 𝐴𝑘 ) / ( ! ‘ 𝑘 ) ) )
4 3 sumeq2i Σ 𝑘 ∈ ℕ0 ( 𝐹𝑘 ) = Σ 𝑘 ∈ ℕ0 ( ( 𝐴𝑘 ) / ( ! ‘ 𝑘 ) )
5 2 4 eqtr4di ( 𝐴 ∈ ℂ → ( exp ‘ 𝐴 ) = Σ 𝑘 ∈ ℕ0 ( 𝐹𝑘 ) )