Metamath Proof Explorer


Theorem efvmacl

Description: The von Mangoldt is closed in the log-integers. (Contributed by Mario Carneiro, 7-Apr-2016)

Ref Expression
Assertion efvmacl ( 𝐴 ∈ ℕ → ( exp ‘ ( Λ ‘ 𝐴 ) ) ∈ ℕ )

Proof

Step Hyp Ref Expression
1 fveq2 ( ( Λ ‘ 𝐴 ) = 0 → ( exp ‘ ( Λ ‘ 𝐴 ) ) = ( exp ‘ 0 ) )
2 ef0 ( exp ‘ 0 ) = 1
3 1 2 eqtrdi ( ( Λ ‘ 𝐴 ) = 0 → ( exp ‘ ( Λ ‘ 𝐴 ) ) = 1 )
4 3 eleq1d ( ( Λ ‘ 𝐴 ) = 0 → ( ( exp ‘ ( Λ ‘ 𝐴 ) ) ∈ ℕ ↔ 1 ∈ ℕ ) )
5 isppw2 ( 𝐴 ∈ ℕ → ( ( Λ ‘ 𝐴 ) ≠ 0 ↔ ∃ 𝑝 ∈ ℙ ∃ 𝑘 ∈ ℕ 𝐴 = ( 𝑝𝑘 ) ) )
6 vmappw ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) → ( Λ ‘ ( 𝑝𝑘 ) ) = ( log ‘ 𝑝 ) )
7 6 fveq2d ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) → ( exp ‘ ( Λ ‘ ( 𝑝𝑘 ) ) ) = ( exp ‘ ( log ‘ 𝑝 ) ) )
8 prmnn ( 𝑝 ∈ ℙ → 𝑝 ∈ ℕ )
9 8 nnrpd ( 𝑝 ∈ ℙ → 𝑝 ∈ ℝ+ )
10 9 reeflogd ( 𝑝 ∈ ℙ → ( exp ‘ ( log ‘ 𝑝 ) ) = 𝑝 )
11 10 8 eqeltrd ( 𝑝 ∈ ℙ → ( exp ‘ ( log ‘ 𝑝 ) ) ∈ ℕ )
12 11 adantr ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) → ( exp ‘ ( log ‘ 𝑝 ) ) ∈ ℕ )
13 7 12 eqeltrd ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) → ( exp ‘ ( Λ ‘ ( 𝑝𝑘 ) ) ) ∈ ℕ )
14 fveq2 ( 𝐴 = ( 𝑝𝑘 ) → ( Λ ‘ 𝐴 ) = ( Λ ‘ ( 𝑝𝑘 ) ) )
15 14 fveq2d ( 𝐴 = ( 𝑝𝑘 ) → ( exp ‘ ( Λ ‘ 𝐴 ) ) = ( exp ‘ ( Λ ‘ ( 𝑝𝑘 ) ) ) )
16 15 eleq1d ( 𝐴 = ( 𝑝𝑘 ) → ( ( exp ‘ ( Λ ‘ 𝐴 ) ) ∈ ℕ ↔ ( exp ‘ ( Λ ‘ ( 𝑝𝑘 ) ) ) ∈ ℕ ) )
17 13 16 syl5ibrcom ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) → ( 𝐴 = ( 𝑝𝑘 ) → ( exp ‘ ( Λ ‘ 𝐴 ) ) ∈ ℕ ) )
18 17 rexlimivv ( ∃ 𝑝 ∈ ℙ ∃ 𝑘 ∈ ℕ 𝐴 = ( 𝑝𝑘 ) → ( exp ‘ ( Λ ‘ 𝐴 ) ) ∈ ℕ )
19 5 18 syl6bi ( 𝐴 ∈ ℕ → ( ( Λ ‘ 𝐴 ) ≠ 0 → ( exp ‘ ( Λ ‘ 𝐴 ) ) ∈ ℕ ) )
20 19 imp ( ( 𝐴 ∈ ℕ ∧ ( Λ ‘ 𝐴 ) ≠ 0 ) → ( exp ‘ ( Λ ‘ 𝐴 ) ) ∈ ℕ )
21 1nn 1 ∈ ℕ
22 21 a1i ( 𝐴 ∈ ℕ → 1 ∈ ℕ )
23 4 20 22 pm2.61ne ( 𝐴 ∈ ℕ → ( exp ‘ ( Λ ‘ 𝐴 ) ) ∈ ℕ )