Step |
Hyp |
Ref |
Expression |
1 |
|
fveq2 |
⊢ ( ( Λ ‘ 𝐴 ) = 0 → ( exp ‘ ( Λ ‘ 𝐴 ) ) = ( exp ‘ 0 ) ) |
2 |
|
ef0 |
⊢ ( exp ‘ 0 ) = 1 |
3 |
1 2
|
eqtrdi |
⊢ ( ( Λ ‘ 𝐴 ) = 0 → ( exp ‘ ( Λ ‘ 𝐴 ) ) = 1 ) |
4 |
3
|
eleq1d |
⊢ ( ( Λ ‘ 𝐴 ) = 0 → ( ( exp ‘ ( Λ ‘ 𝐴 ) ) ∈ ℕ ↔ 1 ∈ ℕ ) ) |
5 |
|
isppw2 |
⊢ ( 𝐴 ∈ ℕ → ( ( Λ ‘ 𝐴 ) ≠ 0 ↔ ∃ 𝑝 ∈ ℙ ∃ 𝑘 ∈ ℕ 𝐴 = ( 𝑝 ↑ 𝑘 ) ) ) |
6 |
|
vmappw |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) → ( Λ ‘ ( 𝑝 ↑ 𝑘 ) ) = ( log ‘ 𝑝 ) ) |
7 |
6
|
fveq2d |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) → ( exp ‘ ( Λ ‘ ( 𝑝 ↑ 𝑘 ) ) ) = ( exp ‘ ( log ‘ 𝑝 ) ) ) |
8 |
|
prmnn |
⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℕ ) |
9 |
8
|
nnrpd |
⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℝ+ ) |
10 |
9
|
reeflogd |
⊢ ( 𝑝 ∈ ℙ → ( exp ‘ ( log ‘ 𝑝 ) ) = 𝑝 ) |
11 |
10 8
|
eqeltrd |
⊢ ( 𝑝 ∈ ℙ → ( exp ‘ ( log ‘ 𝑝 ) ) ∈ ℕ ) |
12 |
11
|
adantr |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) → ( exp ‘ ( log ‘ 𝑝 ) ) ∈ ℕ ) |
13 |
7 12
|
eqeltrd |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) → ( exp ‘ ( Λ ‘ ( 𝑝 ↑ 𝑘 ) ) ) ∈ ℕ ) |
14 |
|
fveq2 |
⊢ ( 𝐴 = ( 𝑝 ↑ 𝑘 ) → ( Λ ‘ 𝐴 ) = ( Λ ‘ ( 𝑝 ↑ 𝑘 ) ) ) |
15 |
14
|
fveq2d |
⊢ ( 𝐴 = ( 𝑝 ↑ 𝑘 ) → ( exp ‘ ( Λ ‘ 𝐴 ) ) = ( exp ‘ ( Λ ‘ ( 𝑝 ↑ 𝑘 ) ) ) ) |
16 |
15
|
eleq1d |
⊢ ( 𝐴 = ( 𝑝 ↑ 𝑘 ) → ( ( exp ‘ ( Λ ‘ 𝐴 ) ) ∈ ℕ ↔ ( exp ‘ ( Λ ‘ ( 𝑝 ↑ 𝑘 ) ) ) ∈ ℕ ) ) |
17 |
13 16
|
syl5ibrcom |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) → ( 𝐴 = ( 𝑝 ↑ 𝑘 ) → ( exp ‘ ( Λ ‘ 𝐴 ) ) ∈ ℕ ) ) |
18 |
17
|
rexlimivv |
⊢ ( ∃ 𝑝 ∈ ℙ ∃ 𝑘 ∈ ℕ 𝐴 = ( 𝑝 ↑ 𝑘 ) → ( exp ‘ ( Λ ‘ 𝐴 ) ) ∈ ℕ ) |
19 |
5 18
|
syl6bi |
⊢ ( 𝐴 ∈ ℕ → ( ( Λ ‘ 𝐴 ) ≠ 0 → ( exp ‘ ( Λ ‘ 𝐴 ) ) ∈ ℕ ) ) |
20 |
19
|
imp |
⊢ ( ( 𝐴 ∈ ℕ ∧ ( Λ ‘ 𝐴 ) ≠ 0 ) → ( exp ‘ ( Λ ‘ 𝐴 ) ) ∈ ℕ ) |
21 |
|
1nn |
⊢ 1 ∈ ℕ |
22 |
21
|
a1i |
⊢ ( 𝐴 ∈ ℕ → 1 ∈ ℕ ) |
23 |
4 20 22
|
pm2.61ne |
⊢ ( 𝐴 ∈ ℕ → ( exp ‘ ( Λ ‘ 𝐴 ) ) ∈ ℕ ) |