Description: Value of the exponential function for integers. Special case of efval . Equation 30 of Rudin p. 164. (Contributed by Steve Rodriguez, 15-Sep-2006) (Revised by Mario Carneiro, 5-Jun-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | efzval | ⊢ ( 𝑁 ∈ ℤ → ( exp ‘ 𝑁 ) = ( e ↑ 𝑁 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zcn | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ ) | |
2 | 1 | mulid1d | ⊢ ( 𝑁 ∈ ℤ → ( 𝑁 · 1 ) = 𝑁 ) |
3 | 2 | fveq2d | ⊢ ( 𝑁 ∈ ℤ → ( exp ‘ ( 𝑁 · 1 ) ) = ( exp ‘ 𝑁 ) ) |
4 | ax-1cn | ⊢ 1 ∈ ℂ | |
5 | efexp | ⊢ ( ( 1 ∈ ℂ ∧ 𝑁 ∈ ℤ ) → ( exp ‘ ( 𝑁 · 1 ) ) = ( ( exp ‘ 1 ) ↑ 𝑁 ) ) | |
6 | 4 5 | mpan | ⊢ ( 𝑁 ∈ ℤ → ( exp ‘ ( 𝑁 · 1 ) ) = ( ( exp ‘ 1 ) ↑ 𝑁 ) ) |
7 | 3 6 | eqtr3d | ⊢ ( 𝑁 ∈ ℤ → ( exp ‘ 𝑁 ) = ( ( exp ‘ 1 ) ↑ 𝑁 ) ) |
8 | df-e | ⊢ e = ( exp ‘ 1 ) | |
9 | 8 | oveq1i | ⊢ ( e ↑ 𝑁 ) = ( ( exp ‘ 1 ) ↑ 𝑁 ) |
10 | 7 9 | eqtr4di | ⊢ ( 𝑁 ∈ ℤ → ( exp ‘ 𝑁 ) = ( e ↑ 𝑁 ) ) |