Metamath Proof Explorer


Theorem efzval

Description: Value of the exponential function for integers. Special case of efval . Equation 30 of Rudin p. 164. (Contributed by Steve Rodriguez, 15-Sep-2006) (Revised by Mario Carneiro, 5-Jun-2014)

Ref Expression
Assertion efzval ( 𝑁 ∈ ℤ → ( exp ‘ 𝑁 ) = ( e ↑ 𝑁 ) )

Proof

Step Hyp Ref Expression
1 zcn ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ )
2 1 mulid1d ( 𝑁 ∈ ℤ → ( 𝑁 · 1 ) = 𝑁 )
3 2 fveq2d ( 𝑁 ∈ ℤ → ( exp ‘ ( 𝑁 · 1 ) ) = ( exp ‘ 𝑁 ) )
4 ax-1cn 1 ∈ ℂ
5 efexp ( ( 1 ∈ ℂ ∧ 𝑁 ∈ ℤ ) → ( exp ‘ ( 𝑁 · 1 ) ) = ( ( exp ‘ 1 ) ↑ 𝑁 ) )
6 4 5 mpan ( 𝑁 ∈ ℤ → ( exp ‘ ( 𝑁 · 1 ) ) = ( ( exp ‘ 1 ) ↑ 𝑁 ) )
7 3 6 eqtr3d ( 𝑁 ∈ ℤ → ( exp ‘ 𝑁 ) = ( ( exp ‘ 1 ) ↑ 𝑁 ) )
8 df-e e = ( exp ‘ 1 )
9 8 oveq1i ( e ↑ 𝑁 ) = ( ( exp ‘ 1 ) ↑ 𝑁 )
10 7 9 eqtr4di ( 𝑁 ∈ ℤ → ( exp ‘ 𝑁 ) = ( e ↑ 𝑁 ) )