Step |
Hyp |
Ref |
Expression |
1 |
|
erelem1.1 |
⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ ( 2 · ( ( 1 / 2 ) ↑ 𝑛 ) ) ) |
2 |
|
erelem1.2 |
⊢ 𝐺 = ( 𝑛 ∈ ℕ0 ↦ ( 1 / ( ! ‘ 𝑛 ) ) ) |
3 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
4 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
5 |
4
|
a1i |
⊢ ( ⊤ → 0 ∈ ℕ0 ) |
6 |
|
1e0p1 |
⊢ 1 = ( 0 + 1 ) |
7 |
|
0z |
⊢ 0 ∈ ℤ |
8 |
|
fveq2 |
⊢ ( 𝑛 = 0 → ( ! ‘ 𝑛 ) = ( ! ‘ 0 ) ) |
9 |
|
fac0 |
⊢ ( ! ‘ 0 ) = 1 |
10 |
8 9
|
eqtrdi |
⊢ ( 𝑛 = 0 → ( ! ‘ 𝑛 ) = 1 ) |
11 |
10
|
oveq2d |
⊢ ( 𝑛 = 0 → ( 1 / ( ! ‘ 𝑛 ) ) = ( 1 / 1 ) ) |
12 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
13 |
12
|
div1i |
⊢ ( 1 / 1 ) = 1 |
14 |
11 13
|
eqtrdi |
⊢ ( 𝑛 = 0 → ( 1 / ( ! ‘ 𝑛 ) ) = 1 ) |
15 |
|
1ex |
⊢ 1 ∈ V |
16 |
14 2 15
|
fvmpt |
⊢ ( 0 ∈ ℕ0 → ( 𝐺 ‘ 0 ) = 1 ) |
17 |
4 16
|
mp1i |
⊢ ( ⊤ → ( 𝐺 ‘ 0 ) = 1 ) |
18 |
7 17
|
seq1i |
⊢ ( ⊤ → ( seq 0 ( + , 𝐺 ) ‘ 0 ) = 1 ) |
19 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
20 |
|
fveq2 |
⊢ ( 𝑛 = 1 → ( ! ‘ 𝑛 ) = ( ! ‘ 1 ) ) |
21 |
|
fac1 |
⊢ ( ! ‘ 1 ) = 1 |
22 |
20 21
|
eqtrdi |
⊢ ( 𝑛 = 1 → ( ! ‘ 𝑛 ) = 1 ) |
23 |
22
|
oveq2d |
⊢ ( 𝑛 = 1 → ( 1 / ( ! ‘ 𝑛 ) ) = ( 1 / 1 ) ) |
24 |
23 13
|
eqtrdi |
⊢ ( 𝑛 = 1 → ( 1 / ( ! ‘ 𝑛 ) ) = 1 ) |
25 |
24 2 15
|
fvmpt |
⊢ ( 1 ∈ ℕ0 → ( 𝐺 ‘ 1 ) = 1 ) |
26 |
19 25
|
mp1i |
⊢ ( ⊤ → ( 𝐺 ‘ 1 ) = 1 ) |
27 |
3 5 6 18 26
|
seqp1d |
⊢ ( ⊤ → ( seq 0 ( + , 𝐺 ) ‘ 1 ) = ( 1 + 1 ) ) |
28 |
|
df-2 |
⊢ 2 = ( 1 + 1 ) |
29 |
27 28
|
eqtr4di |
⊢ ( ⊤ → ( seq 0 ( + , 𝐺 ) ‘ 1 ) = 2 ) |
30 |
19
|
a1i |
⊢ ( ⊤ → 1 ∈ ℕ0 ) |
31 |
|
nn0z |
⊢ ( 𝑛 ∈ ℕ0 → 𝑛 ∈ ℤ ) |
32 |
|
1exp |
⊢ ( 𝑛 ∈ ℤ → ( 1 ↑ 𝑛 ) = 1 ) |
33 |
31 32
|
syl |
⊢ ( 𝑛 ∈ ℕ0 → ( 1 ↑ 𝑛 ) = 1 ) |
34 |
33
|
oveq1d |
⊢ ( 𝑛 ∈ ℕ0 → ( ( 1 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) = ( 1 / ( ! ‘ 𝑛 ) ) ) |
35 |
34
|
mpteq2ia |
⊢ ( 𝑛 ∈ ℕ0 ↦ ( ( 1 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( 1 / ( ! ‘ 𝑛 ) ) ) |
36 |
2 35
|
eqtr4i |
⊢ 𝐺 = ( 𝑛 ∈ ℕ0 ↦ ( ( 1 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) |
37 |
36
|
efcvg |
⊢ ( 1 ∈ ℂ → seq 0 ( + , 𝐺 ) ⇝ ( exp ‘ 1 ) ) |
38 |
12 37
|
mp1i |
⊢ ( ⊤ → seq 0 ( + , 𝐺 ) ⇝ ( exp ‘ 1 ) ) |
39 |
|
df-e |
⊢ e = ( exp ‘ 1 ) |
40 |
38 39
|
breqtrrdi |
⊢ ( ⊤ → seq 0 ( + , 𝐺 ) ⇝ e ) |
41 |
|
fveq2 |
⊢ ( 𝑛 = 𝑘 → ( ! ‘ 𝑛 ) = ( ! ‘ 𝑘 ) ) |
42 |
41
|
oveq2d |
⊢ ( 𝑛 = 𝑘 → ( 1 / ( ! ‘ 𝑛 ) ) = ( 1 / ( ! ‘ 𝑘 ) ) ) |
43 |
|
ovex |
⊢ ( 1 / ( ! ‘ 𝑘 ) ) ∈ V |
44 |
42 2 43
|
fvmpt |
⊢ ( 𝑘 ∈ ℕ0 → ( 𝐺 ‘ 𝑘 ) = ( 1 / ( ! ‘ 𝑘 ) ) ) |
45 |
44
|
adantl |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐺 ‘ 𝑘 ) = ( 1 / ( ! ‘ 𝑘 ) ) ) |
46 |
|
faccl |
⊢ ( 𝑘 ∈ ℕ0 → ( ! ‘ 𝑘 ) ∈ ℕ ) |
47 |
46
|
adantl |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( ! ‘ 𝑘 ) ∈ ℕ ) |
48 |
47
|
nnrecred |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( 1 / ( ! ‘ 𝑘 ) ) ∈ ℝ ) |
49 |
45 48
|
eqeltrd |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐺 ‘ 𝑘 ) ∈ ℝ ) |
50 |
47
|
nnred |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( ! ‘ 𝑘 ) ∈ ℝ ) |
51 |
47
|
nngt0d |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → 0 < ( ! ‘ 𝑘 ) ) |
52 |
|
1re |
⊢ 1 ∈ ℝ |
53 |
|
0le1 |
⊢ 0 ≤ 1 |
54 |
|
divge0 |
⊢ ( ( ( 1 ∈ ℝ ∧ 0 ≤ 1 ) ∧ ( ( ! ‘ 𝑘 ) ∈ ℝ ∧ 0 < ( ! ‘ 𝑘 ) ) ) → 0 ≤ ( 1 / ( ! ‘ 𝑘 ) ) ) |
55 |
52 53 54
|
mpanl12 |
⊢ ( ( ( ! ‘ 𝑘 ) ∈ ℝ ∧ 0 < ( ! ‘ 𝑘 ) ) → 0 ≤ ( 1 / ( ! ‘ 𝑘 ) ) ) |
56 |
50 51 55
|
syl2anc |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → 0 ≤ ( 1 / ( ! ‘ 𝑘 ) ) ) |
57 |
56 45
|
breqtrrd |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → 0 ≤ ( 𝐺 ‘ 𝑘 ) ) |
58 |
3 30 40 49 57
|
climserle |
⊢ ( ⊤ → ( seq 0 ( + , 𝐺 ) ‘ 1 ) ≤ e ) |
59 |
29 58
|
eqbrtrrd |
⊢ ( ⊤ → 2 ≤ e ) |
60 |
59
|
mptru |
⊢ 2 ≤ e |
61 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
62 |
|
1zzd |
⊢ ( ⊤ → 1 ∈ ℤ ) |
63 |
49
|
recnd |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) |
64 |
3 5 63 40
|
clim2ser |
⊢ ( ⊤ → seq ( 0 + 1 ) ( + , 𝐺 ) ⇝ ( e − ( seq 0 ( + , 𝐺 ) ‘ 0 ) ) ) |
65 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
66 |
|
seqeq1 |
⊢ ( ( 0 + 1 ) = 1 → seq ( 0 + 1 ) ( + , 𝐺 ) = seq 1 ( + , 𝐺 ) ) |
67 |
65 66
|
ax-mp |
⊢ seq ( 0 + 1 ) ( + , 𝐺 ) = seq 1 ( + , 𝐺 ) |
68 |
18
|
mptru |
⊢ ( seq 0 ( + , 𝐺 ) ‘ 0 ) = 1 |
69 |
68
|
oveq2i |
⊢ ( e − ( seq 0 ( + , 𝐺 ) ‘ 0 ) ) = ( e − 1 ) |
70 |
64 67 69
|
3brtr3g |
⊢ ( ⊤ → seq 1 ( + , 𝐺 ) ⇝ ( e − 1 ) ) |
71 |
|
2cnd |
⊢ ( ⊤ → 2 ∈ ℂ ) |
72 |
|
oveq2 |
⊢ ( 𝑛 = 𝑘 → ( ( 1 / 2 ) ↑ 𝑛 ) = ( ( 1 / 2 ) ↑ 𝑘 ) ) |
73 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) |
74 |
|
ovex |
⊢ ( ( 1 / 2 ) ↑ 𝑘 ) ∈ V |
75 |
72 73 74
|
fvmpt |
⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ‘ 𝑘 ) = ( ( 1 / 2 ) ↑ 𝑘 ) ) |
76 |
75
|
adantl |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ‘ 𝑘 ) = ( ( 1 / 2 ) ↑ 𝑘 ) ) |
77 |
|
halfre |
⊢ ( 1 / 2 ) ∈ ℝ |
78 |
|
simpr |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℕ0 ) |
79 |
|
reexpcl |
⊢ ( ( ( 1 / 2 ) ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) → ( ( 1 / 2 ) ↑ 𝑘 ) ∈ ℝ ) |
80 |
77 78 79
|
sylancr |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( ( 1 / 2 ) ↑ 𝑘 ) ∈ ℝ ) |
81 |
80
|
recnd |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( ( 1 / 2 ) ↑ 𝑘 ) ∈ ℂ ) |
82 |
76 81
|
eqeltrd |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ‘ 𝑘 ) ∈ ℂ ) |
83 |
|
1lt2 |
⊢ 1 < 2 |
84 |
|
2re |
⊢ 2 ∈ ℝ |
85 |
|
0le2 |
⊢ 0 ≤ 2 |
86 |
|
absid |
⊢ ( ( 2 ∈ ℝ ∧ 0 ≤ 2 ) → ( abs ‘ 2 ) = 2 ) |
87 |
84 85 86
|
mp2an |
⊢ ( abs ‘ 2 ) = 2 |
88 |
83 87
|
breqtrri |
⊢ 1 < ( abs ‘ 2 ) |
89 |
88
|
a1i |
⊢ ( ⊤ → 1 < ( abs ‘ 2 ) ) |
90 |
71 89 76
|
georeclim |
⊢ ( ⊤ → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ) ⇝ ( 2 / ( 2 − 1 ) ) ) |
91 |
|
2m1e1 |
⊢ ( 2 − 1 ) = 1 |
92 |
91
|
oveq2i |
⊢ ( 2 / ( 2 − 1 ) ) = ( 2 / 1 ) |
93 |
|
2cn |
⊢ 2 ∈ ℂ |
94 |
93
|
div1i |
⊢ ( 2 / 1 ) = 2 |
95 |
92 94
|
eqtri |
⊢ ( 2 / ( 2 − 1 ) ) = 2 |
96 |
90 95
|
breqtrdi |
⊢ ( ⊤ → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ) ⇝ 2 ) |
97 |
3 5 82 96
|
clim2ser |
⊢ ( ⊤ → seq ( 0 + 1 ) ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ) ⇝ ( 2 − ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ) ‘ 0 ) ) ) |
98 |
|
seqeq1 |
⊢ ( ( 0 + 1 ) = 1 → seq ( 0 + 1 ) ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ) = seq 1 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ) ) |
99 |
65 98
|
ax-mp |
⊢ seq ( 0 + 1 ) ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ) = seq 1 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ) |
100 |
|
oveq2 |
⊢ ( 𝑛 = 0 → ( ( 1 / 2 ) ↑ 𝑛 ) = ( ( 1 / 2 ) ↑ 0 ) ) |
101 |
|
ovex |
⊢ ( ( 1 / 2 ) ↑ 0 ) ∈ V |
102 |
100 73 101
|
fvmpt |
⊢ ( 0 ∈ ℕ0 → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ‘ 0 ) = ( ( 1 / 2 ) ↑ 0 ) ) |
103 |
4 102
|
ax-mp |
⊢ ( ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ‘ 0 ) = ( ( 1 / 2 ) ↑ 0 ) |
104 |
|
halfcn |
⊢ ( 1 / 2 ) ∈ ℂ |
105 |
|
exp0 |
⊢ ( ( 1 / 2 ) ∈ ℂ → ( ( 1 / 2 ) ↑ 0 ) = 1 ) |
106 |
104 105
|
ax-mp |
⊢ ( ( 1 / 2 ) ↑ 0 ) = 1 |
107 |
103 106
|
eqtri |
⊢ ( ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ‘ 0 ) = 1 |
108 |
107
|
a1i |
⊢ ( ⊤ → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ‘ 0 ) = 1 ) |
109 |
7 108
|
seq1i |
⊢ ( ⊤ → ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ) ‘ 0 ) = 1 ) |
110 |
109
|
mptru |
⊢ ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ) ‘ 0 ) = 1 |
111 |
110
|
oveq2i |
⊢ ( 2 − ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ) ‘ 0 ) ) = ( 2 − 1 ) |
112 |
111 91
|
eqtri |
⊢ ( 2 − ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ) ‘ 0 ) ) = 1 |
113 |
97 99 112
|
3brtr3g |
⊢ ( ⊤ → seq 1 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ) ⇝ 1 ) |
114 |
|
nnnn0 |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℕ0 ) |
115 |
114 82
|
sylan2 |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ‘ 𝑘 ) ∈ ℂ ) |
116 |
72
|
oveq2d |
⊢ ( 𝑛 = 𝑘 → ( 2 · ( ( 1 / 2 ) ↑ 𝑛 ) ) = ( 2 · ( ( 1 / 2 ) ↑ 𝑘 ) ) ) |
117 |
|
ovex |
⊢ ( 2 · ( ( 1 / 2 ) ↑ 𝑘 ) ) ∈ V |
118 |
116 1 117
|
fvmpt |
⊢ ( 𝑘 ∈ ℕ → ( 𝐹 ‘ 𝑘 ) = ( 2 · ( ( 1 / 2 ) ↑ 𝑘 ) ) ) |
119 |
118
|
adantl |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) = ( 2 · ( ( 1 / 2 ) ↑ 𝑘 ) ) ) |
120 |
114 76
|
sylan2 |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ‘ 𝑘 ) = ( ( 1 / 2 ) ↑ 𝑘 ) ) |
121 |
120
|
oveq2d |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 2 · ( ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ‘ 𝑘 ) ) = ( 2 · ( ( 1 / 2 ) ↑ 𝑘 ) ) ) |
122 |
119 121
|
eqtr4d |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) = ( 2 · ( ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ‘ 𝑘 ) ) ) |
123 |
61 62 71 113 115 122
|
isermulc2 |
⊢ ( ⊤ → seq 1 ( + , 𝐹 ) ⇝ ( 2 · 1 ) ) |
124 |
|
2t1e2 |
⊢ ( 2 · 1 ) = 2 |
125 |
123 124
|
breqtrdi |
⊢ ( ⊤ → seq 1 ( + , 𝐹 ) ⇝ 2 ) |
126 |
114 49
|
sylan2 |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 𝐺 ‘ 𝑘 ) ∈ ℝ ) |
127 |
|
remulcl |
⊢ ( ( 2 ∈ ℝ ∧ ( ( 1 / 2 ) ↑ 𝑘 ) ∈ ℝ ) → ( 2 · ( ( 1 / 2 ) ↑ 𝑘 ) ) ∈ ℝ ) |
128 |
84 80 127
|
sylancr |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( 2 · ( ( 1 / 2 ) ↑ 𝑘 ) ) ∈ ℝ ) |
129 |
114 128
|
sylan2 |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 2 · ( ( 1 / 2 ) ↑ 𝑘 ) ) ∈ ℝ ) |
130 |
119 129
|
eqeltrd |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
131 |
|
faclbnd2 |
⊢ ( 𝑘 ∈ ℕ0 → ( ( 2 ↑ 𝑘 ) / 2 ) ≤ ( ! ‘ 𝑘 ) ) |
132 |
131
|
adantl |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( ( 2 ↑ 𝑘 ) / 2 ) ≤ ( ! ‘ 𝑘 ) ) |
133 |
|
2nn |
⊢ 2 ∈ ℕ |
134 |
|
nnexpcl |
⊢ ( ( 2 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( 2 ↑ 𝑘 ) ∈ ℕ ) |
135 |
133 78 134
|
sylancr |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( 2 ↑ 𝑘 ) ∈ ℕ ) |
136 |
135
|
nnrpd |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( 2 ↑ 𝑘 ) ∈ ℝ+ ) |
137 |
136
|
rphalfcld |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( ( 2 ↑ 𝑘 ) / 2 ) ∈ ℝ+ ) |
138 |
47
|
nnrpd |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( ! ‘ 𝑘 ) ∈ ℝ+ ) |
139 |
137 138
|
lerecd |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 2 ↑ 𝑘 ) / 2 ) ≤ ( ! ‘ 𝑘 ) ↔ ( 1 / ( ! ‘ 𝑘 ) ) ≤ ( 1 / ( ( 2 ↑ 𝑘 ) / 2 ) ) ) ) |
140 |
132 139
|
mpbid |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( 1 / ( ! ‘ 𝑘 ) ) ≤ ( 1 / ( ( 2 ↑ 𝑘 ) / 2 ) ) ) |
141 |
|
2cnd |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → 2 ∈ ℂ ) |
142 |
135
|
nncnd |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( 2 ↑ 𝑘 ) ∈ ℂ ) |
143 |
135
|
nnne0d |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( 2 ↑ 𝑘 ) ≠ 0 ) |
144 |
141 142 143
|
divrecd |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( 2 / ( 2 ↑ 𝑘 ) ) = ( 2 · ( 1 / ( 2 ↑ 𝑘 ) ) ) ) |
145 |
|
2ne0 |
⊢ 2 ≠ 0 |
146 |
|
recdiv |
⊢ ( ( ( ( 2 ↑ 𝑘 ) ∈ ℂ ∧ ( 2 ↑ 𝑘 ) ≠ 0 ) ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ) → ( 1 / ( ( 2 ↑ 𝑘 ) / 2 ) ) = ( 2 / ( 2 ↑ 𝑘 ) ) ) |
147 |
93 145 146
|
mpanr12 |
⊢ ( ( ( 2 ↑ 𝑘 ) ∈ ℂ ∧ ( 2 ↑ 𝑘 ) ≠ 0 ) → ( 1 / ( ( 2 ↑ 𝑘 ) / 2 ) ) = ( 2 / ( 2 ↑ 𝑘 ) ) ) |
148 |
142 143 147
|
syl2anc |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( 1 / ( ( 2 ↑ 𝑘 ) / 2 ) ) = ( 2 / ( 2 ↑ 𝑘 ) ) ) |
149 |
145
|
a1i |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → 2 ≠ 0 ) |
150 |
|
nn0z |
⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℤ ) |
151 |
150
|
adantl |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℤ ) |
152 |
141 149 151
|
exprecd |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( ( 1 / 2 ) ↑ 𝑘 ) = ( 1 / ( 2 ↑ 𝑘 ) ) ) |
153 |
152
|
oveq2d |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( 2 · ( ( 1 / 2 ) ↑ 𝑘 ) ) = ( 2 · ( 1 / ( 2 ↑ 𝑘 ) ) ) ) |
154 |
144 148 153
|
3eqtr4rd |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( 2 · ( ( 1 / 2 ) ↑ 𝑘 ) ) = ( 1 / ( ( 2 ↑ 𝑘 ) / 2 ) ) ) |
155 |
140 154
|
breqtrrd |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( 1 / ( ! ‘ 𝑘 ) ) ≤ ( 2 · ( ( 1 / 2 ) ↑ 𝑘 ) ) ) |
156 |
114 155
|
sylan2 |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 1 / ( ! ‘ 𝑘 ) ) ≤ ( 2 · ( ( 1 / 2 ) ↑ 𝑘 ) ) ) |
157 |
114 45
|
sylan2 |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 𝐺 ‘ 𝑘 ) = ( 1 / ( ! ‘ 𝑘 ) ) ) |
158 |
156 157 119
|
3brtr4d |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 𝐺 ‘ 𝑘 ) ≤ ( 𝐹 ‘ 𝑘 ) ) |
159 |
61 62 70 125 126 130 158
|
iserle |
⊢ ( ⊤ → ( e − 1 ) ≤ 2 ) |
160 |
159
|
mptru |
⊢ ( e − 1 ) ≤ 2 |
161 |
|
ere |
⊢ e ∈ ℝ |
162 |
161 52 84
|
lesubaddi |
⊢ ( ( e − 1 ) ≤ 2 ↔ e ≤ ( 2 + 1 ) ) |
163 |
160 162
|
mpbi |
⊢ e ≤ ( 2 + 1 ) |
164 |
|
df-3 |
⊢ 3 = ( 2 + 1 ) |
165 |
163 164
|
breqtrri |
⊢ e ≤ 3 |
166 |
60 165
|
pm3.2i |
⊢ ( 2 ≤ e ∧ e ≤ 3 ) |