| Step |
Hyp |
Ref |
Expression |
| 1 |
|
erelem1.1 |
⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ ( 2 · ( ( 1 / 2 ) ↑ 𝑛 ) ) ) |
| 2 |
|
erelem1.2 |
⊢ 𝐺 = ( 𝑛 ∈ ℕ0 ↦ ( 1 / ( ! ‘ 𝑛 ) ) ) |
| 3 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
| 4 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 5 |
4
|
a1i |
⊢ ( ⊤ → 0 ∈ ℕ0 ) |
| 6 |
|
1e0p1 |
⊢ 1 = ( 0 + 1 ) |
| 7 |
|
0z |
⊢ 0 ∈ ℤ |
| 8 |
|
fveq2 |
⊢ ( 𝑛 = 0 → ( ! ‘ 𝑛 ) = ( ! ‘ 0 ) ) |
| 9 |
|
fac0 |
⊢ ( ! ‘ 0 ) = 1 |
| 10 |
8 9
|
eqtrdi |
⊢ ( 𝑛 = 0 → ( ! ‘ 𝑛 ) = 1 ) |
| 11 |
10
|
oveq2d |
⊢ ( 𝑛 = 0 → ( 1 / ( ! ‘ 𝑛 ) ) = ( 1 / 1 ) ) |
| 12 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 13 |
12
|
div1i |
⊢ ( 1 / 1 ) = 1 |
| 14 |
11 13
|
eqtrdi |
⊢ ( 𝑛 = 0 → ( 1 / ( ! ‘ 𝑛 ) ) = 1 ) |
| 15 |
|
1ex |
⊢ 1 ∈ V |
| 16 |
14 2 15
|
fvmpt |
⊢ ( 0 ∈ ℕ0 → ( 𝐺 ‘ 0 ) = 1 ) |
| 17 |
4 16
|
mp1i |
⊢ ( ⊤ → ( 𝐺 ‘ 0 ) = 1 ) |
| 18 |
7 17
|
seq1i |
⊢ ( ⊤ → ( seq 0 ( + , 𝐺 ) ‘ 0 ) = 1 ) |
| 19 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
| 20 |
|
fveq2 |
⊢ ( 𝑛 = 1 → ( ! ‘ 𝑛 ) = ( ! ‘ 1 ) ) |
| 21 |
|
fac1 |
⊢ ( ! ‘ 1 ) = 1 |
| 22 |
20 21
|
eqtrdi |
⊢ ( 𝑛 = 1 → ( ! ‘ 𝑛 ) = 1 ) |
| 23 |
22
|
oveq2d |
⊢ ( 𝑛 = 1 → ( 1 / ( ! ‘ 𝑛 ) ) = ( 1 / 1 ) ) |
| 24 |
23 13
|
eqtrdi |
⊢ ( 𝑛 = 1 → ( 1 / ( ! ‘ 𝑛 ) ) = 1 ) |
| 25 |
24 2 15
|
fvmpt |
⊢ ( 1 ∈ ℕ0 → ( 𝐺 ‘ 1 ) = 1 ) |
| 26 |
19 25
|
mp1i |
⊢ ( ⊤ → ( 𝐺 ‘ 1 ) = 1 ) |
| 27 |
3 5 6 18 26
|
seqp1d |
⊢ ( ⊤ → ( seq 0 ( + , 𝐺 ) ‘ 1 ) = ( 1 + 1 ) ) |
| 28 |
|
df-2 |
⊢ 2 = ( 1 + 1 ) |
| 29 |
27 28
|
eqtr4di |
⊢ ( ⊤ → ( seq 0 ( + , 𝐺 ) ‘ 1 ) = 2 ) |
| 30 |
19
|
a1i |
⊢ ( ⊤ → 1 ∈ ℕ0 ) |
| 31 |
|
nn0z |
⊢ ( 𝑛 ∈ ℕ0 → 𝑛 ∈ ℤ ) |
| 32 |
|
1exp |
⊢ ( 𝑛 ∈ ℤ → ( 1 ↑ 𝑛 ) = 1 ) |
| 33 |
31 32
|
syl |
⊢ ( 𝑛 ∈ ℕ0 → ( 1 ↑ 𝑛 ) = 1 ) |
| 34 |
33
|
oveq1d |
⊢ ( 𝑛 ∈ ℕ0 → ( ( 1 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) = ( 1 / ( ! ‘ 𝑛 ) ) ) |
| 35 |
34
|
mpteq2ia |
⊢ ( 𝑛 ∈ ℕ0 ↦ ( ( 1 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( 1 / ( ! ‘ 𝑛 ) ) ) |
| 36 |
2 35
|
eqtr4i |
⊢ 𝐺 = ( 𝑛 ∈ ℕ0 ↦ ( ( 1 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) |
| 37 |
36
|
efcvg |
⊢ ( 1 ∈ ℂ → seq 0 ( + , 𝐺 ) ⇝ ( exp ‘ 1 ) ) |
| 38 |
12 37
|
mp1i |
⊢ ( ⊤ → seq 0 ( + , 𝐺 ) ⇝ ( exp ‘ 1 ) ) |
| 39 |
|
df-e |
⊢ e = ( exp ‘ 1 ) |
| 40 |
38 39
|
breqtrrdi |
⊢ ( ⊤ → seq 0 ( + , 𝐺 ) ⇝ e ) |
| 41 |
|
fveq2 |
⊢ ( 𝑛 = 𝑘 → ( ! ‘ 𝑛 ) = ( ! ‘ 𝑘 ) ) |
| 42 |
41
|
oveq2d |
⊢ ( 𝑛 = 𝑘 → ( 1 / ( ! ‘ 𝑛 ) ) = ( 1 / ( ! ‘ 𝑘 ) ) ) |
| 43 |
|
ovex |
⊢ ( 1 / ( ! ‘ 𝑘 ) ) ∈ V |
| 44 |
42 2 43
|
fvmpt |
⊢ ( 𝑘 ∈ ℕ0 → ( 𝐺 ‘ 𝑘 ) = ( 1 / ( ! ‘ 𝑘 ) ) ) |
| 45 |
44
|
adantl |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐺 ‘ 𝑘 ) = ( 1 / ( ! ‘ 𝑘 ) ) ) |
| 46 |
|
faccl |
⊢ ( 𝑘 ∈ ℕ0 → ( ! ‘ 𝑘 ) ∈ ℕ ) |
| 47 |
46
|
adantl |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( ! ‘ 𝑘 ) ∈ ℕ ) |
| 48 |
47
|
nnrecred |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( 1 / ( ! ‘ 𝑘 ) ) ∈ ℝ ) |
| 49 |
45 48
|
eqeltrd |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐺 ‘ 𝑘 ) ∈ ℝ ) |
| 50 |
47
|
nnred |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( ! ‘ 𝑘 ) ∈ ℝ ) |
| 51 |
47
|
nngt0d |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → 0 < ( ! ‘ 𝑘 ) ) |
| 52 |
|
1re |
⊢ 1 ∈ ℝ |
| 53 |
|
0le1 |
⊢ 0 ≤ 1 |
| 54 |
|
divge0 |
⊢ ( ( ( 1 ∈ ℝ ∧ 0 ≤ 1 ) ∧ ( ( ! ‘ 𝑘 ) ∈ ℝ ∧ 0 < ( ! ‘ 𝑘 ) ) ) → 0 ≤ ( 1 / ( ! ‘ 𝑘 ) ) ) |
| 55 |
52 53 54
|
mpanl12 |
⊢ ( ( ( ! ‘ 𝑘 ) ∈ ℝ ∧ 0 < ( ! ‘ 𝑘 ) ) → 0 ≤ ( 1 / ( ! ‘ 𝑘 ) ) ) |
| 56 |
50 51 55
|
syl2anc |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → 0 ≤ ( 1 / ( ! ‘ 𝑘 ) ) ) |
| 57 |
56 45
|
breqtrrd |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → 0 ≤ ( 𝐺 ‘ 𝑘 ) ) |
| 58 |
3 30 40 49 57
|
climserle |
⊢ ( ⊤ → ( seq 0 ( + , 𝐺 ) ‘ 1 ) ≤ e ) |
| 59 |
29 58
|
eqbrtrrd |
⊢ ( ⊤ → 2 ≤ e ) |
| 60 |
59
|
mptru |
⊢ 2 ≤ e |
| 61 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 62 |
|
1zzd |
⊢ ( ⊤ → 1 ∈ ℤ ) |
| 63 |
49
|
recnd |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) |
| 64 |
3 5 63 40
|
clim2ser |
⊢ ( ⊤ → seq ( 0 + 1 ) ( + , 𝐺 ) ⇝ ( e − ( seq 0 ( + , 𝐺 ) ‘ 0 ) ) ) |
| 65 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
| 66 |
|
seqeq1 |
⊢ ( ( 0 + 1 ) = 1 → seq ( 0 + 1 ) ( + , 𝐺 ) = seq 1 ( + , 𝐺 ) ) |
| 67 |
65 66
|
ax-mp |
⊢ seq ( 0 + 1 ) ( + , 𝐺 ) = seq 1 ( + , 𝐺 ) |
| 68 |
18
|
mptru |
⊢ ( seq 0 ( + , 𝐺 ) ‘ 0 ) = 1 |
| 69 |
68
|
oveq2i |
⊢ ( e − ( seq 0 ( + , 𝐺 ) ‘ 0 ) ) = ( e − 1 ) |
| 70 |
64 67 69
|
3brtr3g |
⊢ ( ⊤ → seq 1 ( + , 𝐺 ) ⇝ ( e − 1 ) ) |
| 71 |
|
2cnd |
⊢ ( ⊤ → 2 ∈ ℂ ) |
| 72 |
|
oveq2 |
⊢ ( 𝑛 = 𝑘 → ( ( 1 / 2 ) ↑ 𝑛 ) = ( ( 1 / 2 ) ↑ 𝑘 ) ) |
| 73 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) |
| 74 |
|
ovex |
⊢ ( ( 1 / 2 ) ↑ 𝑘 ) ∈ V |
| 75 |
72 73 74
|
fvmpt |
⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ‘ 𝑘 ) = ( ( 1 / 2 ) ↑ 𝑘 ) ) |
| 76 |
75
|
adantl |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ‘ 𝑘 ) = ( ( 1 / 2 ) ↑ 𝑘 ) ) |
| 77 |
|
halfre |
⊢ ( 1 / 2 ) ∈ ℝ |
| 78 |
|
simpr |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℕ0 ) |
| 79 |
|
reexpcl |
⊢ ( ( ( 1 / 2 ) ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) → ( ( 1 / 2 ) ↑ 𝑘 ) ∈ ℝ ) |
| 80 |
77 78 79
|
sylancr |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( ( 1 / 2 ) ↑ 𝑘 ) ∈ ℝ ) |
| 81 |
80
|
recnd |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( ( 1 / 2 ) ↑ 𝑘 ) ∈ ℂ ) |
| 82 |
76 81
|
eqeltrd |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ‘ 𝑘 ) ∈ ℂ ) |
| 83 |
|
1lt2 |
⊢ 1 < 2 |
| 84 |
|
2re |
⊢ 2 ∈ ℝ |
| 85 |
|
0le2 |
⊢ 0 ≤ 2 |
| 86 |
|
absid |
⊢ ( ( 2 ∈ ℝ ∧ 0 ≤ 2 ) → ( abs ‘ 2 ) = 2 ) |
| 87 |
84 85 86
|
mp2an |
⊢ ( abs ‘ 2 ) = 2 |
| 88 |
83 87
|
breqtrri |
⊢ 1 < ( abs ‘ 2 ) |
| 89 |
88
|
a1i |
⊢ ( ⊤ → 1 < ( abs ‘ 2 ) ) |
| 90 |
71 89 76
|
georeclim |
⊢ ( ⊤ → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ) ⇝ ( 2 / ( 2 − 1 ) ) ) |
| 91 |
|
2m1e1 |
⊢ ( 2 − 1 ) = 1 |
| 92 |
91
|
oveq2i |
⊢ ( 2 / ( 2 − 1 ) ) = ( 2 / 1 ) |
| 93 |
|
2cn |
⊢ 2 ∈ ℂ |
| 94 |
93
|
div1i |
⊢ ( 2 / 1 ) = 2 |
| 95 |
92 94
|
eqtri |
⊢ ( 2 / ( 2 − 1 ) ) = 2 |
| 96 |
90 95
|
breqtrdi |
⊢ ( ⊤ → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ) ⇝ 2 ) |
| 97 |
3 5 82 96
|
clim2ser |
⊢ ( ⊤ → seq ( 0 + 1 ) ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ) ⇝ ( 2 − ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ) ‘ 0 ) ) ) |
| 98 |
|
seqeq1 |
⊢ ( ( 0 + 1 ) = 1 → seq ( 0 + 1 ) ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ) = seq 1 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ) ) |
| 99 |
65 98
|
ax-mp |
⊢ seq ( 0 + 1 ) ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ) = seq 1 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ) |
| 100 |
|
oveq2 |
⊢ ( 𝑛 = 0 → ( ( 1 / 2 ) ↑ 𝑛 ) = ( ( 1 / 2 ) ↑ 0 ) ) |
| 101 |
|
ovex |
⊢ ( ( 1 / 2 ) ↑ 0 ) ∈ V |
| 102 |
100 73 101
|
fvmpt |
⊢ ( 0 ∈ ℕ0 → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ‘ 0 ) = ( ( 1 / 2 ) ↑ 0 ) ) |
| 103 |
4 102
|
ax-mp |
⊢ ( ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ‘ 0 ) = ( ( 1 / 2 ) ↑ 0 ) |
| 104 |
|
halfcn |
⊢ ( 1 / 2 ) ∈ ℂ |
| 105 |
|
exp0 |
⊢ ( ( 1 / 2 ) ∈ ℂ → ( ( 1 / 2 ) ↑ 0 ) = 1 ) |
| 106 |
104 105
|
ax-mp |
⊢ ( ( 1 / 2 ) ↑ 0 ) = 1 |
| 107 |
103 106
|
eqtri |
⊢ ( ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ‘ 0 ) = 1 |
| 108 |
107
|
a1i |
⊢ ( ⊤ → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ‘ 0 ) = 1 ) |
| 109 |
7 108
|
seq1i |
⊢ ( ⊤ → ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ) ‘ 0 ) = 1 ) |
| 110 |
109
|
mptru |
⊢ ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ) ‘ 0 ) = 1 |
| 111 |
110
|
oveq2i |
⊢ ( 2 − ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ) ‘ 0 ) ) = ( 2 − 1 ) |
| 112 |
111 91
|
eqtri |
⊢ ( 2 − ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ) ‘ 0 ) ) = 1 |
| 113 |
97 99 112
|
3brtr3g |
⊢ ( ⊤ → seq 1 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ) ⇝ 1 ) |
| 114 |
|
nnnn0 |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℕ0 ) |
| 115 |
114 82
|
sylan2 |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ‘ 𝑘 ) ∈ ℂ ) |
| 116 |
72
|
oveq2d |
⊢ ( 𝑛 = 𝑘 → ( 2 · ( ( 1 / 2 ) ↑ 𝑛 ) ) = ( 2 · ( ( 1 / 2 ) ↑ 𝑘 ) ) ) |
| 117 |
|
ovex |
⊢ ( 2 · ( ( 1 / 2 ) ↑ 𝑘 ) ) ∈ V |
| 118 |
116 1 117
|
fvmpt |
⊢ ( 𝑘 ∈ ℕ → ( 𝐹 ‘ 𝑘 ) = ( 2 · ( ( 1 / 2 ) ↑ 𝑘 ) ) ) |
| 119 |
118
|
adantl |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) = ( 2 · ( ( 1 / 2 ) ↑ 𝑘 ) ) ) |
| 120 |
114 76
|
sylan2 |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ‘ 𝑘 ) = ( ( 1 / 2 ) ↑ 𝑘 ) ) |
| 121 |
120
|
oveq2d |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 2 · ( ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ‘ 𝑘 ) ) = ( 2 · ( ( 1 / 2 ) ↑ 𝑘 ) ) ) |
| 122 |
119 121
|
eqtr4d |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) = ( 2 · ( ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ‘ 𝑘 ) ) ) |
| 123 |
61 62 71 113 115 122
|
isermulc2 |
⊢ ( ⊤ → seq 1 ( + , 𝐹 ) ⇝ ( 2 · 1 ) ) |
| 124 |
|
2t1e2 |
⊢ ( 2 · 1 ) = 2 |
| 125 |
123 124
|
breqtrdi |
⊢ ( ⊤ → seq 1 ( + , 𝐹 ) ⇝ 2 ) |
| 126 |
114 49
|
sylan2 |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 𝐺 ‘ 𝑘 ) ∈ ℝ ) |
| 127 |
|
remulcl |
⊢ ( ( 2 ∈ ℝ ∧ ( ( 1 / 2 ) ↑ 𝑘 ) ∈ ℝ ) → ( 2 · ( ( 1 / 2 ) ↑ 𝑘 ) ) ∈ ℝ ) |
| 128 |
84 80 127
|
sylancr |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( 2 · ( ( 1 / 2 ) ↑ 𝑘 ) ) ∈ ℝ ) |
| 129 |
114 128
|
sylan2 |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 2 · ( ( 1 / 2 ) ↑ 𝑘 ) ) ∈ ℝ ) |
| 130 |
119 129
|
eqeltrd |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 131 |
|
faclbnd2 |
⊢ ( 𝑘 ∈ ℕ0 → ( ( 2 ↑ 𝑘 ) / 2 ) ≤ ( ! ‘ 𝑘 ) ) |
| 132 |
131
|
adantl |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( ( 2 ↑ 𝑘 ) / 2 ) ≤ ( ! ‘ 𝑘 ) ) |
| 133 |
|
2nn |
⊢ 2 ∈ ℕ |
| 134 |
|
nnexpcl |
⊢ ( ( 2 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( 2 ↑ 𝑘 ) ∈ ℕ ) |
| 135 |
133 78 134
|
sylancr |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( 2 ↑ 𝑘 ) ∈ ℕ ) |
| 136 |
135
|
nnrpd |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( 2 ↑ 𝑘 ) ∈ ℝ+ ) |
| 137 |
136
|
rphalfcld |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( ( 2 ↑ 𝑘 ) / 2 ) ∈ ℝ+ ) |
| 138 |
47
|
nnrpd |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( ! ‘ 𝑘 ) ∈ ℝ+ ) |
| 139 |
137 138
|
lerecd |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 2 ↑ 𝑘 ) / 2 ) ≤ ( ! ‘ 𝑘 ) ↔ ( 1 / ( ! ‘ 𝑘 ) ) ≤ ( 1 / ( ( 2 ↑ 𝑘 ) / 2 ) ) ) ) |
| 140 |
132 139
|
mpbid |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( 1 / ( ! ‘ 𝑘 ) ) ≤ ( 1 / ( ( 2 ↑ 𝑘 ) / 2 ) ) ) |
| 141 |
|
2cnd |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → 2 ∈ ℂ ) |
| 142 |
135
|
nncnd |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( 2 ↑ 𝑘 ) ∈ ℂ ) |
| 143 |
135
|
nnne0d |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( 2 ↑ 𝑘 ) ≠ 0 ) |
| 144 |
141 142 143
|
divrecd |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( 2 / ( 2 ↑ 𝑘 ) ) = ( 2 · ( 1 / ( 2 ↑ 𝑘 ) ) ) ) |
| 145 |
|
2ne0 |
⊢ 2 ≠ 0 |
| 146 |
|
recdiv |
⊢ ( ( ( ( 2 ↑ 𝑘 ) ∈ ℂ ∧ ( 2 ↑ 𝑘 ) ≠ 0 ) ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ) → ( 1 / ( ( 2 ↑ 𝑘 ) / 2 ) ) = ( 2 / ( 2 ↑ 𝑘 ) ) ) |
| 147 |
93 145 146
|
mpanr12 |
⊢ ( ( ( 2 ↑ 𝑘 ) ∈ ℂ ∧ ( 2 ↑ 𝑘 ) ≠ 0 ) → ( 1 / ( ( 2 ↑ 𝑘 ) / 2 ) ) = ( 2 / ( 2 ↑ 𝑘 ) ) ) |
| 148 |
142 143 147
|
syl2anc |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( 1 / ( ( 2 ↑ 𝑘 ) / 2 ) ) = ( 2 / ( 2 ↑ 𝑘 ) ) ) |
| 149 |
145
|
a1i |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → 2 ≠ 0 ) |
| 150 |
|
nn0z |
⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℤ ) |
| 151 |
150
|
adantl |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℤ ) |
| 152 |
141 149 151
|
exprecd |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( ( 1 / 2 ) ↑ 𝑘 ) = ( 1 / ( 2 ↑ 𝑘 ) ) ) |
| 153 |
152
|
oveq2d |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( 2 · ( ( 1 / 2 ) ↑ 𝑘 ) ) = ( 2 · ( 1 / ( 2 ↑ 𝑘 ) ) ) ) |
| 154 |
144 148 153
|
3eqtr4rd |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( 2 · ( ( 1 / 2 ) ↑ 𝑘 ) ) = ( 1 / ( ( 2 ↑ 𝑘 ) / 2 ) ) ) |
| 155 |
140 154
|
breqtrrd |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( 1 / ( ! ‘ 𝑘 ) ) ≤ ( 2 · ( ( 1 / 2 ) ↑ 𝑘 ) ) ) |
| 156 |
114 155
|
sylan2 |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 1 / ( ! ‘ 𝑘 ) ) ≤ ( 2 · ( ( 1 / 2 ) ↑ 𝑘 ) ) ) |
| 157 |
114 45
|
sylan2 |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 𝐺 ‘ 𝑘 ) = ( 1 / ( ! ‘ 𝑘 ) ) ) |
| 158 |
156 157 119
|
3brtr4d |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 𝐺 ‘ 𝑘 ) ≤ ( 𝐹 ‘ 𝑘 ) ) |
| 159 |
61 62 70 125 126 130 158
|
iserle |
⊢ ( ⊤ → ( e − 1 ) ≤ 2 ) |
| 160 |
159
|
mptru |
⊢ ( e − 1 ) ≤ 2 |
| 161 |
|
ere |
⊢ e ∈ ℝ |
| 162 |
161 52 84
|
lesubaddi |
⊢ ( ( e − 1 ) ≤ 2 ↔ e ≤ ( 2 + 1 ) ) |
| 163 |
160 162
|
mpbi |
⊢ e ≤ ( 2 + 1 ) |
| 164 |
|
df-3 |
⊢ 3 = ( 2 + 1 ) |
| 165 |
163 164
|
breqtrri |
⊢ e ≤ 3 |
| 166 |
60 165
|
pm3.2i |
⊢ ( 2 ≤ e ∧ e ≤ 3 ) |