| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							simp2 | 
							⊢ ( ( ( 𝐺  ∈  𝑊  ∧  𝑆  ∈  𝑈 )  ∧  ( Vtx ‘ 𝑆 )  ⊆  ( Vtx ‘ 𝐺 )  ∧  ( Fun  ( iEdg ‘ 𝑆 )  ∧  ( Edg ‘ 𝑆 )  =  ∅ ) )  →  ( Vtx ‘ 𝑆 )  ⊆  ( Vtx ‘ 𝐺 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							eqid | 
							⊢ ( iEdg ‘ 𝑆 )  =  ( iEdg ‘ 𝑆 )  | 
						
						
							| 3 | 
							
								
							 | 
							eqid | 
							⊢ ( Edg ‘ 𝑆 )  =  ( Edg ‘ 𝑆 )  | 
						
						
							| 4 | 
							
								2 3
							 | 
							edg0iedg0 | 
							⊢ ( Fun  ( iEdg ‘ 𝑆 )  →  ( ( Edg ‘ 𝑆 )  =  ∅  ↔  ( iEdg ‘ 𝑆 )  =  ∅ ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							adantl | 
							⊢ ( ( ( 𝐺  ∈  𝑊  ∧  𝑆  ∈  𝑈 )  ∧  Fun  ( iEdg ‘ 𝑆 ) )  →  ( ( Edg ‘ 𝑆 )  =  ∅  ↔  ( iEdg ‘ 𝑆 )  =  ∅ ) )  | 
						
						
							| 6 | 
							
								
							 | 
							res0 | 
							⊢ ( ( iEdg ‘ 𝐺 )  ↾  ∅ )  =  ∅  | 
						
						
							| 7 | 
							
								6
							 | 
							eqcomi | 
							⊢ ∅  =  ( ( iEdg ‘ 𝐺 )  ↾  ∅ )  | 
						
						
							| 8 | 
							
								
							 | 
							id | 
							⊢ ( ( iEdg ‘ 𝑆 )  =  ∅  →  ( iEdg ‘ 𝑆 )  =  ∅ )  | 
						
						
							| 9 | 
							
								
							 | 
							dmeq | 
							⊢ ( ( iEdg ‘ 𝑆 )  =  ∅  →  dom  ( iEdg ‘ 𝑆 )  =  dom  ∅ )  | 
						
						
							| 10 | 
							
								
							 | 
							dm0 | 
							⊢ dom  ∅  =  ∅  | 
						
						
							| 11 | 
							
								9 10
							 | 
							eqtrdi | 
							⊢ ( ( iEdg ‘ 𝑆 )  =  ∅  →  dom  ( iEdg ‘ 𝑆 )  =  ∅ )  | 
						
						
							| 12 | 
							
								11
							 | 
							reseq2d | 
							⊢ ( ( iEdg ‘ 𝑆 )  =  ∅  →  ( ( iEdg ‘ 𝐺 )  ↾  dom  ( iEdg ‘ 𝑆 ) )  =  ( ( iEdg ‘ 𝐺 )  ↾  ∅ ) )  | 
						
						
							| 13 | 
							
								7 8 12
							 | 
							3eqtr4a | 
							⊢ ( ( iEdg ‘ 𝑆 )  =  ∅  →  ( iEdg ‘ 𝑆 )  =  ( ( iEdg ‘ 𝐺 )  ↾  dom  ( iEdg ‘ 𝑆 ) ) )  | 
						
						
							| 14 | 
							
								5 13
							 | 
							biimtrdi | 
							⊢ ( ( ( 𝐺  ∈  𝑊  ∧  𝑆  ∈  𝑈 )  ∧  Fun  ( iEdg ‘ 𝑆 ) )  →  ( ( Edg ‘ 𝑆 )  =  ∅  →  ( iEdg ‘ 𝑆 )  =  ( ( iEdg ‘ 𝐺 )  ↾  dom  ( iEdg ‘ 𝑆 ) ) ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							impr | 
							⊢ ( ( ( 𝐺  ∈  𝑊  ∧  𝑆  ∈  𝑈 )  ∧  ( Fun  ( iEdg ‘ 𝑆 )  ∧  ( Edg ‘ 𝑆 )  =  ∅ ) )  →  ( iEdg ‘ 𝑆 )  =  ( ( iEdg ‘ 𝐺 )  ↾  dom  ( iEdg ‘ 𝑆 ) ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							3adant2 | 
							⊢ ( ( ( 𝐺  ∈  𝑊  ∧  𝑆  ∈  𝑈 )  ∧  ( Vtx ‘ 𝑆 )  ⊆  ( Vtx ‘ 𝐺 )  ∧  ( Fun  ( iEdg ‘ 𝑆 )  ∧  ( Edg ‘ 𝑆 )  =  ∅ ) )  →  ( iEdg ‘ 𝑆 )  =  ( ( iEdg ‘ 𝐺 )  ↾  dom  ( iEdg ‘ 𝑆 ) ) )  | 
						
						
							| 17 | 
							
								
							 | 
							0ss | 
							⊢ ∅  ⊆  𝒫  ( Vtx ‘ 𝑆 )  | 
						
						
							| 18 | 
							
								
							 | 
							sseq1 | 
							⊢ ( ( Edg ‘ 𝑆 )  =  ∅  →  ( ( Edg ‘ 𝑆 )  ⊆  𝒫  ( Vtx ‘ 𝑆 )  ↔  ∅  ⊆  𝒫  ( Vtx ‘ 𝑆 ) ) )  | 
						
						
							| 19 | 
							
								17 18
							 | 
							mpbiri | 
							⊢ ( ( Edg ‘ 𝑆 )  =  ∅  →  ( Edg ‘ 𝑆 )  ⊆  𝒫  ( Vtx ‘ 𝑆 ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							adantl | 
							⊢ ( ( Fun  ( iEdg ‘ 𝑆 )  ∧  ( Edg ‘ 𝑆 )  =  ∅ )  →  ( Edg ‘ 𝑆 )  ⊆  𝒫  ( Vtx ‘ 𝑆 ) )  | 
						
						
							| 21 | 
							
								20
							 | 
							3ad2ant3 | 
							⊢ ( ( ( 𝐺  ∈  𝑊  ∧  𝑆  ∈  𝑈 )  ∧  ( Vtx ‘ 𝑆 )  ⊆  ( Vtx ‘ 𝐺 )  ∧  ( Fun  ( iEdg ‘ 𝑆 )  ∧  ( Edg ‘ 𝑆 )  =  ∅ ) )  →  ( Edg ‘ 𝑆 )  ⊆  𝒫  ( Vtx ‘ 𝑆 ) )  | 
						
						
							| 22 | 
							
								
							 | 
							eqid | 
							⊢ ( Vtx ‘ 𝑆 )  =  ( Vtx ‘ 𝑆 )  | 
						
						
							| 23 | 
							
								
							 | 
							eqid | 
							⊢ ( Vtx ‘ 𝐺 )  =  ( Vtx ‘ 𝐺 )  | 
						
						
							| 24 | 
							
								
							 | 
							eqid | 
							⊢ ( iEdg ‘ 𝐺 )  =  ( iEdg ‘ 𝐺 )  | 
						
						
							| 25 | 
							
								22 23 2 24 3
							 | 
							issubgr | 
							⊢ ( ( 𝐺  ∈  𝑊  ∧  𝑆  ∈  𝑈 )  →  ( 𝑆  SubGraph  𝐺  ↔  ( ( Vtx ‘ 𝑆 )  ⊆  ( Vtx ‘ 𝐺 )  ∧  ( iEdg ‘ 𝑆 )  =  ( ( iEdg ‘ 𝐺 )  ↾  dom  ( iEdg ‘ 𝑆 ) )  ∧  ( Edg ‘ 𝑆 )  ⊆  𝒫  ( Vtx ‘ 𝑆 ) ) ) )  | 
						
						
							| 26 | 
							
								25
							 | 
							3ad2ant1 | 
							⊢ ( ( ( 𝐺  ∈  𝑊  ∧  𝑆  ∈  𝑈 )  ∧  ( Vtx ‘ 𝑆 )  ⊆  ( Vtx ‘ 𝐺 )  ∧  ( Fun  ( iEdg ‘ 𝑆 )  ∧  ( Edg ‘ 𝑆 )  =  ∅ ) )  →  ( 𝑆  SubGraph  𝐺  ↔  ( ( Vtx ‘ 𝑆 )  ⊆  ( Vtx ‘ 𝐺 )  ∧  ( iEdg ‘ 𝑆 )  =  ( ( iEdg ‘ 𝐺 )  ↾  dom  ( iEdg ‘ 𝑆 ) )  ∧  ( Edg ‘ 𝑆 )  ⊆  𝒫  ( Vtx ‘ 𝑆 ) ) ) )  | 
						
						
							| 27 | 
							
								1 16 21 26
							 | 
							mpbir3and | 
							⊢ ( ( ( 𝐺  ∈  𝑊  ∧  𝑆  ∈  𝑈 )  ∧  ( Vtx ‘ 𝑆 )  ⊆  ( Vtx ‘ 𝐺 )  ∧  ( Fun  ( iEdg ‘ 𝑆 )  ∧  ( Edg ‘ 𝑆 )  =  ∅ ) )  →  𝑆  SubGraph  𝐺 )  |