Step |
Hyp |
Ref |
Expression |
1 |
|
simp2 |
⊢ ( ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ∈ 𝑈 ) ∧ ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( Fun ( iEdg ‘ 𝑆 ) ∧ ( Edg ‘ 𝑆 ) = ∅ ) ) → ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ) |
2 |
|
eqid |
⊢ ( iEdg ‘ 𝑆 ) = ( iEdg ‘ 𝑆 ) |
3 |
|
eqid |
⊢ ( Edg ‘ 𝑆 ) = ( Edg ‘ 𝑆 ) |
4 |
2 3
|
edg0iedg0 |
⊢ ( Fun ( iEdg ‘ 𝑆 ) → ( ( Edg ‘ 𝑆 ) = ∅ ↔ ( iEdg ‘ 𝑆 ) = ∅ ) ) |
5 |
4
|
adantl |
⊢ ( ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ∈ 𝑈 ) ∧ Fun ( iEdg ‘ 𝑆 ) ) → ( ( Edg ‘ 𝑆 ) = ∅ ↔ ( iEdg ‘ 𝑆 ) = ∅ ) ) |
6 |
|
res0 |
⊢ ( ( iEdg ‘ 𝐺 ) ↾ ∅ ) = ∅ |
7 |
6
|
eqcomi |
⊢ ∅ = ( ( iEdg ‘ 𝐺 ) ↾ ∅ ) |
8 |
|
id |
⊢ ( ( iEdg ‘ 𝑆 ) = ∅ → ( iEdg ‘ 𝑆 ) = ∅ ) |
9 |
|
dmeq |
⊢ ( ( iEdg ‘ 𝑆 ) = ∅ → dom ( iEdg ‘ 𝑆 ) = dom ∅ ) |
10 |
|
dm0 |
⊢ dom ∅ = ∅ |
11 |
9 10
|
eqtrdi |
⊢ ( ( iEdg ‘ 𝑆 ) = ∅ → dom ( iEdg ‘ 𝑆 ) = ∅ ) |
12 |
11
|
reseq2d |
⊢ ( ( iEdg ‘ 𝑆 ) = ∅ → ( ( iEdg ‘ 𝐺 ) ↾ dom ( iEdg ‘ 𝑆 ) ) = ( ( iEdg ‘ 𝐺 ) ↾ ∅ ) ) |
13 |
7 8 12
|
3eqtr4a |
⊢ ( ( iEdg ‘ 𝑆 ) = ∅ → ( iEdg ‘ 𝑆 ) = ( ( iEdg ‘ 𝐺 ) ↾ dom ( iEdg ‘ 𝑆 ) ) ) |
14 |
5 13
|
syl6bi |
⊢ ( ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ∈ 𝑈 ) ∧ Fun ( iEdg ‘ 𝑆 ) ) → ( ( Edg ‘ 𝑆 ) = ∅ → ( iEdg ‘ 𝑆 ) = ( ( iEdg ‘ 𝐺 ) ↾ dom ( iEdg ‘ 𝑆 ) ) ) ) |
15 |
14
|
impr |
⊢ ( ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ∈ 𝑈 ) ∧ ( Fun ( iEdg ‘ 𝑆 ) ∧ ( Edg ‘ 𝑆 ) = ∅ ) ) → ( iEdg ‘ 𝑆 ) = ( ( iEdg ‘ 𝐺 ) ↾ dom ( iEdg ‘ 𝑆 ) ) ) |
16 |
15
|
3adant2 |
⊢ ( ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ∈ 𝑈 ) ∧ ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( Fun ( iEdg ‘ 𝑆 ) ∧ ( Edg ‘ 𝑆 ) = ∅ ) ) → ( iEdg ‘ 𝑆 ) = ( ( iEdg ‘ 𝐺 ) ↾ dom ( iEdg ‘ 𝑆 ) ) ) |
17 |
|
0ss |
⊢ ∅ ⊆ 𝒫 ( Vtx ‘ 𝑆 ) |
18 |
|
sseq1 |
⊢ ( ( Edg ‘ 𝑆 ) = ∅ → ( ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ↔ ∅ ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ) |
19 |
17 18
|
mpbiri |
⊢ ( ( Edg ‘ 𝑆 ) = ∅ → ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) |
20 |
19
|
adantl |
⊢ ( ( Fun ( iEdg ‘ 𝑆 ) ∧ ( Edg ‘ 𝑆 ) = ∅ ) → ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) |
21 |
20
|
3ad2ant3 |
⊢ ( ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ∈ 𝑈 ) ∧ ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( Fun ( iEdg ‘ 𝑆 ) ∧ ( Edg ‘ 𝑆 ) = ∅ ) ) → ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) |
22 |
|
eqid |
⊢ ( Vtx ‘ 𝑆 ) = ( Vtx ‘ 𝑆 ) |
23 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
24 |
|
eqid |
⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) |
25 |
22 23 2 24 3
|
issubgr |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ∈ 𝑈 ) → ( 𝑆 SubGraph 𝐺 ↔ ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) = ( ( iEdg ‘ 𝐺 ) ↾ dom ( iEdg ‘ 𝑆 ) ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ) ) |
26 |
25
|
3ad2ant1 |
⊢ ( ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ∈ 𝑈 ) ∧ ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( Fun ( iEdg ‘ 𝑆 ) ∧ ( Edg ‘ 𝑆 ) = ∅ ) ) → ( 𝑆 SubGraph 𝐺 ↔ ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) = ( ( iEdg ‘ 𝐺 ) ↾ dom ( iEdg ‘ 𝑆 ) ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ) ) |
27 |
1 16 21 26
|
mpbir3and |
⊢ ( ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ∈ 𝑈 ) ∧ ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( Fun ( iEdg ‘ 𝑆 ) ∧ ( Edg ‘ 𝑆 ) = ∅ ) ) → 𝑆 SubGraph 𝐺 ) |