Step |
Hyp |
Ref |
Expression |
1 |
|
ehl0base.e |
⊢ 𝐸 = ( 𝔼hil ‘ 0 ) |
2 |
|
ehl0base.0 |
⊢ 0 = ( 0g ‘ 𝐸 ) |
3 |
1
|
ehl0base |
⊢ ( Base ‘ 𝐸 ) = { ∅ } |
4 |
|
ovex |
⊢ ( 1 ... 0 ) ∈ V |
5 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
6 |
1
|
ehlval |
⊢ ( 0 ∈ ℕ0 → 𝐸 = ( ℝ^ ‘ ( 1 ... 0 ) ) ) |
7 |
5 6
|
ax-mp |
⊢ 𝐸 = ( ℝ^ ‘ ( 1 ... 0 ) ) |
8 |
|
fz10 |
⊢ ( 1 ... 0 ) = ∅ |
9 |
8
|
xpeq1i |
⊢ ( ( 1 ... 0 ) × { 0 } ) = ( ∅ × { 0 } ) |
10 |
9
|
eqcomi |
⊢ ( ∅ × { 0 } ) = ( ( 1 ... 0 ) × { 0 } ) |
11 |
7 10
|
rrx0 |
⊢ ( ( 1 ... 0 ) ∈ V → ( 0g ‘ 𝐸 ) = ( ∅ × { 0 } ) ) |
12 |
4 11
|
ax-mp |
⊢ ( 0g ‘ 𝐸 ) = ( ∅ × { 0 } ) |
13 |
2 12
|
eqtri |
⊢ 0 = ( ∅ × { 0 } ) |
14 |
|
0xp |
⊢ ( ∅ × { 0 } ) = ∅ |
15 |
13 14
|
eqtri |
⊢ 0 = ∅ |
16 |
15
|
eqcomi |
⊢ ∅ = 0 |
17 |
16
|
sneqi |
⊢ { ∅ } = { 0 } |
18 |
3 17
|
eqtri |
⊢ ( Base ‘ 𝐸 ) = { 0 } |