Metamath Proof Explorer


Theorem ehl0base

Description: The base of the Euclidean space of dimension 0 consists only of one element, the empty set. (Contributed by AV, 12-Feb-2023)

Ref Expression
Hypothesis ehl0base.e 𝐸 = ( 𝔼hil ‘ 0 )
Assertion ehl0base ( Base ‘ 𝐸 ) = { ∅ }

Proof

Step Hyp Ref Expression
1 ehl0base.e 𝐸 = ( 𝔼hil ‘ 0 )
2 0nn0 0 ∈ ℕ0
3 1 ehlbase ( 0 ∈ ℕ0 → ( ℝ ↑m ( 1 ... 0 ) ) = ( Base ‘ 𝐸 ) )
4 3 eqcomd ( 0 ∈ ℕ0 → ( Base ‘ 𝐸 ) = ( ℝ ↑m ( 1 ... 0 ) ) )
5 2 4 ax-mp ( Base ‘ 𝐸 ) = ( ℝ ↑m ( 1 ... 0 ) )
6 fz10 ( 1 ... 0 ) = ∅
7 6 oveq2i ( ℝ ↑m ( 1 ... 0 ) ) = ( ℝ ↑m ∅ )
8 reex ℝ ∈ V
9 mapdm0 ( ℝ ∈ V → ( ℝ ↑m ∅ ) = { ∅ } )
10 8 9 ax-mp ( ℝ ↑m ∅ ) = { ∅ }
11 5 7 10 3eqtri ( Base ‘ 𝐸 ) = { ∅ }