Description: The base of the Euclidean space of dimension 0 consists only of one element, the empty set. (Contributed by AV, 12-Feb-2023)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ehl0base.e | ⊢ 𝐸 = ( 𝔼hil ‘ 0 ) | |
Assertion | ehl0base | ⊢ ( Base ‘ 𝐸 ) = { ∅ } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ehl0base.e | ⊢ 𝐸 = ( 𝔼hil ‘ 0 ) | |
2 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
3 | 1 | ehlbase | ⊢ ( 0 ∈ ℕ0 → ( ℝ ↑m ( 1 ... 0 ) ) = ( Base ‘ 𝐸 ) ) |
4 | 3 | eqcomd | ⊢ ( 0 ∈ ℕ0 → ( Base ‘ 𝐸 ) = ( ℝ ↑m ( 1 ... 0 ) ) ) |
5 | 2 4 | ax-mp | ⊢ ( Base ‘ 𝐸 ) = ( ℝ ↑m ( 1 ... 0 ) ) |
6 | fz10 | ⊢ ( 1 ... 0 ) = ∅ | |
7 | 6 | oveq2i | ⊢ ( ℝ ↑m ( 1 ... 0 ) ) = ( ℝ ↑m ∅ ) |
8 | reex | ⊢ ℝ ∈ V | |
9 | mapdm0 | ⊢ ( ℝ ∈ V → ( ℝ ↑m ∅ ) = { ∅ } ) | |
10 | 8 9 | ax-mp | ⊢ ( ℝ ↑m ∅ ) = { ∅ } |
11 | 5 7 10 | 3eqtri | ⊢ ( Base ‘ 𝐸 ) = { ∅ } |