Step |
Hyp |
Ref |
Expression |
1 |
|
ehl1eudis.e |
⊢ 𝐸 = ( 𝔼hil ‘ 1 ) |
2 |
|
ehl1eudis.x |
⊢ 𝑋 = ( ℝ ↑m { 1 } ) |
3 |
|
ehl1eudis.d |
⊢ 𝐷 = ( dist ‘ 𝐸 ) |
4 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
5 |
|
1z |
⊢ 1 ∈ ℤ |
6 |
|
fzsn |
⊢ ( 1 ∈ ℤ → ( 1 ... 1 ) = { 1 } ) |
7 |
5 6
|
ax-mp |
⊢ ( 1 ... 1 ) = { 1 } |
8 |
7
|
eqcomi |
⊢ { 1 } = ( 1 ... 1 ) |
9 |
8 1 2 3
|
ehleudis |
⊢ ( 1 ∈ ℕ0 → 𝐷 = ( 𝑓 ∈ 𝑋 , 𝑔 ∈ 𝑋 ↦ ( √ ‘ Σ 𝑘 ∈ { 1 } ( ( ( 𝑓 ‘ 𝑘 ) − ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) ) ) ) |
10 |
4 9
|
ax-mp |
⊢ 𝐷 = ( 𝑓 ∈ 𝑋 , 𝑔 ∈ 𝑋 ↦ ( √ ‘ Σ 𝑘 ∈ { 1 } ( ( ( 𝑓 ‘ 𝑘 ) − ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) ) ) |
11 |
2
|
eleq2i |
⊢ ( 𝑓 ∈ 𝑋 ↔ 𝑓 ∈ ( ℝ ↑m { 1 } ) ) |
12 |
|
reex |
⊢ ℝ ∈ V |
13 |
|
snex |
⊢ { 1 } ∈ V |
14 |
12 13
|
elmap |
⊢ ( 𝑓 ∈ ( ℝ ↑m { 1 } ) ↔ 𝑓 : { 1 } ⟶ ℝ ) |
15 |
11 14
|
bitri |
⊢ ( 𝑓 ∈ 𝑋 ↔ 𝑓 : { 1 } ⟶ ℝ ) |
16 |
|
id |
⊢ ( 𝑓 : { 1 } ⟶ ℝ → 𝑓 : { 1 } ⟶ ℝ ) |
17 |
|
1ex |
⊢ 1 ∈ V |
18 |
17
|
snid |
⊢ 1 ∈ { 1 } |
19 |
18
|
a1i |
⊢ ( 𝑓 : { 1 } ⟶ ℝ → 1 ∈ { 1 } ) |
20 |
16 19
|
ffvelrnd |
⊢ ( 𝑓 : { 1 } ⟶ ℝ → ( 𝑓 ‘ 1 ) ∈ ℝ ) |
21 |
15 20
|
sylbi |
⊢ ( 𝑓 ∈ 𝑋 → ( 𝑓 ‘ 1 ) ∈ ℝ ) |
22 |
21
|
adantr |
⊢ ( ( 𝑓 ∈ 𝑋 ∧ 𝑔 ∈ 𝑋 ) → ( 𝑓 ‘ 1 ) ∈ ℝ ) |
23 |
2
|
eleq2i |
⊢ ( 𝑔 ∈ 𝑋 ↔ 𝑔 ∈ ( ℝ ↑m { 1 } ) ) |
24 |
12 13
|
elmap |
⊢ ( 𝑔 ∈ ( ℝ ↑m { 1 } ) ↔ 𝑔 : { 1 } ⟶ ℝ ) |
25 |
23 24
|
bitri |
⊢ ( 𝑔 ∈ 𝑋 ↔ 𝑔 : { 1 } ⟶ ℝ ) |
26 |
|
id |
⊢ ( 𝑔 : { 1 } ⟶ ℝ → 𝑔 : { 1 } ⟶ ℝ ) |
27 |
18
|
a1i |
⊢ ( 𝑔 : { 1 } ⟶ ℝ → 1 ∈ { 1 } ) |
28 |
26 27
|
ffvelrnd |
⊢ ( 𝑔 : { 1 } ⟶ ℝ → ( 𝑔 ‘ 1 ) ∈ ℝ ) |
29 |
25 28
|
sylbi |
⊢ ( 𝑔 ∈ 𝑋 → ( 𝑔 ‘ 1 ) ∈ ℝ ) |
30 |
29
|
adantl |
⊢ ( ( 𝑓 ∈ 𝑋 ∧ 𝑔 ∈ 𝑋 ) → ( 𝑔 ‘ 1 ) ∈ ℝ ) |
31 |
22 30
|
resubcld |
⊢ ( ( 𝑓 ∈ 𝑋 ∧ 𝑔 ∈ 𝑋 ) → ( ( 𝑓 ‘ 1 ) − ( 𝑔 ‘ 1 ) ) ∈ ℝ ) |
32 |
31
|
resqcld |
⊢ ( ( 𝑓 ∈ 𝑋 ∧ 𝑔 ∈ 𝑋 ) → ( ( ( 𝑓 ‘ 1 ) − ( 𝑔 ‘ 1 ) ) ↑ 2 ) ∈ ℝ ) |
33 |
32
|
recnd |
⊢ ( ( 𝑓 ∈ 𝑋 ∧ 𝑔 ∈ 𝑋 ) → ( ( ( 𝑓 ‘ 1 ) − ( 𝑔 ‘ 1 ) ) ↑ 2 ) ∈ ℂ ) |
34 |
|
fveq2 |
⊢ ( 𝑘 = 1 → ( 𝑓 ‘ 𝑘 ) = ( 𝑓 ‘ 1 ) ) |
35 |
|
fveq2 |
⊢ ( 𝑘 = 1 → ( 𝑔 ‘ 𝑘 ) = ( 𝑔 ‘ 1 ) ) |
36 |
34 35
|
oveq12d |
⊢ ( 𝑘 = 1 → ( ( 𝑓 ‘ 𝑘 ) − ( 𝑔 ‘ 𝑘 ) ) = ( ( 𝑓 ‘ 1 ) − ( 𝑔 ‘ 1 ) ) ) |
37 |
36
|
oveq1d |
⊢ ( 𝑘 = 1 → ( ( ( 𝑓 ‘ 𝑘 ) − ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) = ( ( ( 𝑓 ‘ 1 ) − ( 𝑔 ‘ 1 ) ) ↑ 2 ) ) |
38 |
37
|
sumsn |
⊢ ( ( 1 ∈ ℤ ∧ ( ( ( 𝑓 ‘ 1 ) − ( 𝑔 ‘ 1 ) ) ↑ 2 ) ∈ ℂ ) → Σ 𝑘 ∈ { 1 } ( ( ( 𝑓 ‘ 𝑘 ) − ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) = ( ( ( 𝑓 ‘ 1 ) − ( 𝑔 ‘ 1 ) ) ↑ 2 ) ) |
39 |
5 33 38
|
sylancr |
⊢ ( ( 𝑓 ∈ 𝑋 ∧ 𝑔 ∈ 𝑋 ) → Σ 𝑘 ∈ { 1 } ( ( ( 𝑓 ‘ 𝑘 ) − ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) = ( ( ( 𝑓 ‘ 1 ) − ( 𝑔 ‘ 1 ) ) ↑ 2 ) ) |
40 |
39
|
fveq2d |
⊢ ( ( 𝑓 ∈ 𝑋 ∧ 𝑔 ∈ 𝑋 ) → ( √ ‘ Σ 𝑘 ∈ { 1 } ( ( ( 𝑓 ‘ 𝑘 ) − ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) ) = ( √ ‘ ( ( ( 𝑓 ‘ 1 ) − ( 𝑔 ‘ 1 ) ) ↑ 2 ) ) ) |
41 |
31
|
absred |
⊢ ( ( 𝑓 ∈ 𝑋 ∧ 𝑔 ∈ 𝑋 ) → ( abs ‘ ( ( 𝑓 ‘ 1 ) − ( 𝑔 ‘ 1 ) ) ) = ( √ ‘ ( ( ( 𝑓 ‘ 1 ) − ( 𝑔 ‘ 1 ) ) ↑ 2 ) ) ) |
42 |
40 41
|
eqtr4d |
⊢ ( ( 𝑓 ∈ 𝑋 ∧ 𝑔 ∈ 𝑋 ) → ( √ ‘ Σ 𝑘 ∈ { 1 } ( ( ( 𝑓 ‘ 𝑘 ) − ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) ) = ( abs ‘ ( ( 𝑓 ‘ 1 ) − ( 𝑔 ‘ 1 ) ) ) ) |
43 |
42
|
mpoeq3ia |
⊢ ( 𝑓 ∈ 𝑋 , 𝑔 ∈ 𝑋 ↦ ( √ ‘ Σ 𝑘 ∈ { 1 } ( ( ( 𝑓 ‘ 𝑘 ) − ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) ) ) = ( 𝑓 ∈ 𝑋 , 𝑔 ∈ 𝑋 ↦ ( abs ‘ ( ( 𝑓 ‘ 1 ) − ( 𝑔 ‘ 1 ) ) ) ) |
44 |
10 43
|
eqtri |
⊢ 𝐷 = ( 𝑓 ∈ 𝑋 , 𝑔 ∈ 𝑋 ↦ ( abs ‘ ( ( 𝑓 ‘ 1 ) − ( 𝑔 ‘ 1 ) ) ) ) |