Step |
Hyp |
Ref |
Expression |
1 |
|
ehl1eudis.e |
⊢ 𝐸 = ( 𝔼hil ‘ 1 ) |
2 |
|
ehl1eudis.x |
⊢ 𝑋 = ( ℝ ↑m { 1 } ) |
3 |
|
ehl1eudis.d |
⊢ 𝐷 = ( dist ‘ 𝐸 ) |
4 |
|
fveq1 |
⊢ ( 𝑥 = 𝐹 → ( 𝑥 ‘ 1 ) = ( 𝐹 ‘ 1 ) ) |
5 |
4
|
fvoveq1d |
⊢ ( 𝑥 = 𝐹 → ( abs ‘ ( ( 𝑥 ‘ 1 ) − ( 𝑦 ‘ 1 ) ) ) = ( abs ‘ ( ( 𝐹 ‘ 1 ) − ( 𝑦 ‘ 1 ) ) ) ) |
6 |
|
fveq1 |
⊢ ( 𝑦 = 𝐺 → ( 𝑦 ‘ 1 ) = ( 𝐺 ‘ 1 ) ) |
7 |
6
|
oveq2d |
⊢ ( 𝑦 = 𝐺 → ( ( 𝐹 ‘ 1 ) − ( 𝑦 ‘ 1 ) ) = ( ( 𝐹 ‘ 1 ) − ( 𝐺 ‘ 1 ) ) ) |
8 |
7
|
fveq2d |
⊢ ( 𝑦 = 𝐺 → ( abs ‘ ( ( 𝐹 ‘ 1 ) − ( 𝑦 ‘ 1 ) ) ) = ( abs ‘ ( ( 𝐹 ‘ 1 ) − ( 𝐺 ‘ 1 ) ) ) ) |
9 |
1 2 3
|
ehl1eudis |
⊢ 𝐷 = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( abs ‘ ( ( 𝑥 ‘ 1 ) − ( 𝑦 ‘ 1 ) ) ) ) |
10 |
|
fvex |
⊢ ( abs ‘ ( ( 𝐹 ‘ 1 ) − ( 𝐺 ‘ 1 ) ) ) ∈ V |
11 |
5 8 9 10
|
ovmpo |
⊢ ( ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) → ( 𝐹 𝐷 𝐺 ) = ( abs ‘ ( ( 𝐹 ‘ 1 ) − ( 𝐺 ‘ 1 ) ) ) ) |