Metamath Proof Explorer


Theorem ehl1eudisval

Description: The value of the Euclidean distance function in a real Euclidean space of dimension 1. (Contributed by AV, 16-Jan-2023)

Ref Expression
Hypotheses ehl1eudis.e 𝐸 = ( 𝔼hil ‘ 1 )
ehl1eudis.x 𝑋 = ( ℝ ↑m { 1 } )
ehl1eudis.d 𝐷 = ( dist ‘ 𝐸 )
Assertion ehl1eudisval ( ( 𝐹𝑋𝐺𝑋 ) → ( 𝐹 𝐷 𝐺 ) = ( abs ‘ ( ( 𝐹 ‘ 1 ) − ( 𝐺 ‘ 1 ) ) ) )

Proof

Step Hyp Ref Expression
1 ehl1eudis.e 𝐸 = ( 𝔼hil ‘ 1 )
2 ehl1eudis.x 𝑋 = ( ℝ ↑m { 1 } )
3 ehl1eudis.d 𝐷 = ( dist ‘ 𝐸 )
4 fveq1 ( 𝑥 = 𝐹 → ( 𝑥 ‘ 1 ) = ( 𝐹 ‘ 1 ) )
5 4 fvoveq1d ( 𝑥 = 𝐹 → ( abs ‘ ( ( 𝑥 ‘ 1 ) − ( 𝑦 ‘ 1 ) ) ) = ( abs ‘ ( ( 𝐹 ‘ 1 ) − ( 𝑦 ‘ 1 ) ) ) )
6 fveq1 ( 𝑦 = 𝐺 → ( 𝑦 ‘ 1 ) = ( 𝐺 ‘ 1 ) )
7 6 oveq2d ( 𝑦 = 𝐺 → ( ( 𝐹 ‘ 1 ) − ( 𝑦 ‘ 1 ) ) = ( ( 𝐹 ‘ 1 ) − ( 𝐺 ‘ 1 ) ) )
8 7 fveq2d ( 𝑦 = 𝐺 → ( abs ‘ ( ( 𝐹 ‘ 1 ) − ( 𝑦 ‘ 1 ) ) ) = ( abs ‘ ( ( 𝐹 ‘ 1 ) − ( 𝐺 ‘ 1 ) ) ) )
9 1 2 3 ehl1eudis 𝐷 = ( 𝑥𝑋 , 𝑦𝑋 ↦ ( abs ‘ ( ( 𝑥 ‘ 1 ) − ( 𝑦 ‘ 1 ) ) ) )
10 fvex ( abs ‘ ( ( 𝐹 ‘ 1 ) − ( 𝐺 ‘ 1 ) ) ) ∈ V
11 5 8 9 10 ovmpo ( ( 𝐹𝑋𝐺𝑋 ) → ( 𝐹 𝐷 𝐺 ) = ( abs ‘ ( ( 𝐹 ‘ 1 ) − ( 𝐺 ‘ 1 ) ) ) )