Step |
Hyp |
Ref |
Expression |
1 |
|
ehl2eudis.e |
⊢ 𝐸 = ( 𝔼hil ‘ 2 ) |
2 |
|
ehl2eudis.x |
⊢ 𝑋 = ( ℝ ↑m { 1 , 2 } ) |
3 |
|
ehl2eudis.d |
⊢ 𝐷 = ( dist ‘ 𝐸 ) |
4 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
5 |
|
fz12pr |
⊢ ( 1 ... 2 ) = { 1 , 2 } |
6 |
5
|
eqcomi |
⊢ { 1 , 2 } = ( 1 ... 2 ) |
7 |
6 1 2 3
|
ehleudis |
⊢ ( 2 ∈ ℕ0 → 𝐷 = ( 𝑓 ∈ 𝑋 , 𝑔 ∈ 𝑋 ↦ ( √ ‘ Σ 𝑘 ∈ { 1 , 2 } ( ( ( 𝑓 ‘ 𝑘 ) − ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) ) ) ) |
8 |
4 7
|
ax-mp |
⊢ 𝐷 = ( 𝑓 ∈ 𝑋 , 𝑔 ∈ 𝑋 ↦ ( √ ‘ Σ 𝑘 ∈ { 1 , 2 } ( ( ( 𝑓 ‘ 𝑘 ) − ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) ) ) |
9 |
|
fveq2 |
⊢ ( 𝑘 = 1 → ( 𝑓 ‘ 𝑘 ) = ( 𝑓 ‘ 1 ) ) |
10 |
|
fveq2 |
⊢ ( 𝑘 = 1 → ( 𝑔 ‘ 𝑘 ) = ( 𝑔 ‘ 1 ) ) |
11 |
9 10
|
oveq12d |
⊢ ( 𝑘 = 1 → ( ( 𝑓 ‘ 𝑘 ) − ( 𝑔 ‘ 𝑘 ) ) = ( ( 𝑓 ‘ 1 ) − ( 𝑔 ‘ 1 ) ) ) |
12 |
11
|
oveq1d |
⊢ ( 𝑘 = 1 → ( ( ( 𝑓 ‘ 𝑘 ) − ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) = ( ( ( 𝑓 ‘ 1 ) − ( 𝑔 ‘ 1 ) ) ↑ 2 ) ) |
13 |
|
fveq2 |
⊢ ( 𝑘 = 2 → ( 𝑓 ‘ 𝑘 ) = ( 𝑓 ‘ 2 ) ) |
14 |
|
fveq2 |
⊢ ( 𝑘 = 2 → ( 𝑔 ‘ 𝑘 ) = ( 𝑔 ‘ 2 ) ) |
15 |
13 14
|
oveq12d |
⊢ ( 𝑘 = 2 → ( ( 𝑓 ‘ 𝑘 ) − ( 𝑔 ‘ 𝑘 ) ) = ( ( 𝑓 ‘ 2 ) − ( 𝑔 ‘ 2 ) ) ) |
16 |
15
|
oveq1d |
⊢ ( 𝑘 = 2 → ( ( ( 𝑓 ‘ 𝑘 ) − ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) = ( ( ( 𝑓 ‘ 2 ) − ( 𝑔 ‘ 2 ) ) ↑ 2 ) ) |
17 |
2
|
eleq2i |
⊢ ( 𝑓 ∈ 𝑋 ↔ 𝑓 ∈ ( ℝ ↑m { 1 , 2 } ) ) |
18 |
|
reex |
⊢ ℝ ∈ V |
19 |
|
prex |
⊢ { 1 , 2 } ∈ V |
20 |
18 19
|
elmap |
⊢ ( 𝑓 ∈ ( ℝ ↑m { 1 , 2 } ) ↔ 𝑓 : { 1 , 2 } ⟶ ℝ ) |
21 |
17 20
|
bitri |
⊢ ( 𝑓 ∈ 𝑋 ↔ 𝑓 : { 1 , 2 } ⟶ ℝ ) |
22 |
|
id |
⊢ ( 𝑓 : { 1 , 2 } ⟶ ℝ → 𝑓 : { 1 , 2 } ⟶ ℝ ) |
23 |
|
1ex |
⊢ 1 ∈ V |
24 |
23
|
prid1 |
⊢ 1 ∈ { 1 , 2 } |
25 |
24
|
a1i |
⊢ ( 𝑓 : { 1 , 2 } ⟶ ℝ → 1 ∈ { 1 , 2 } ) |
26 |
22 25
|
ffvelrnd |
⊢ ( 𝑓 : { 1 , 2 } ⟶ ℝ → ( 𝑓 ‘ 1 ) ∈ ℝ ) |
27 |
21 26
|
sylbi |
⊢ ( 𝑓 ∈ 𝑋 → ( 𝑓 ‘ 1 ) ∈ ℝ ) |
28 |
27
|
adantr |
⊢ ( ( 𝑓 ∈ 𝑋 ∧ 𝑔 ∈ 𝑋 ) → ( 𝑓 ‘ 1 ) ∈ ℝ ) |
29 |
2
|
eleq2i |
⊢ ( 𝑔 ∈ 𝑋 ↔ 𝑔 ∈ ( ℝ ↑m { 1 , 2 } ) ) |
30 |
18 19
|
elmap |
⊢ ( 𝑔 ∈ ( ℝ ↑m { 1 , 2 } ) ↔ 𝑔 : { 1 , 2 } ⟶ ℝ ) |
31 |
29 30
|
bitri |
⊢ ( 𝑔 ∈ 𝑋 ↔ 𝑔 : { 1 , 2 } ⟶ ℝ ) |
32 |
|
id |
⊢ ( 𝑔 : { 1 , 2 } ⟶ ℝ → 𝑔 : { 1 , 2 } ⟶ ℝ ) |
33 |
24
|
a1i |
⊢ ( 𝑔 : { 1 , 2 } ⟶ ℝ → 1 ∈ { 1 , 2 } ) |
34 |
32 33
|
ffvelrnd |
⊢ ( 𝑔 : { 1 , 2 } ⟶ ℝ → ( 𝑔 ‘ 1 ) ∈ ℝ ) |
35 |
31 34
|
sylbi |
⊢ ( 𝑔 ∈ 𝑋 → ( 𝑔 ‘ 1 ) ∈ ℝ ) |
36 |
35
|
adantl |
⊢ ( ( 𝑓 ∈ 𝑋 ∧ 𝑔 ∈ 𝑋 ) → ( 𝑔 ‘ 1 ) ∈ ℝ ) |
37 |
28 36
|
resubcld |
⊢ ( ( 𝑓 ∈ 𝑋 ∧ 𝑔 ∈ 𝑋 ) → ( ( 𝑓 ‘ 1 ) − ( 𝑔 ‘ 1 ) ) ∈ ℝ ) |
38 |
37
|
resqcld |
⊢ ( ( 𝑓 ∈ 𝑋 ∧ 𝑔 ∈ 𝑋 ) → ( ( ( 𝑓 ‘ 1 ) − ( 𝑔 ‘ 1 ) ) ↑ 2 ) ∈ ℝ ) |
39 |
38
|
recnd |
⊢ ( ( 𝑓 ∈ 𝑋 ∧ 𝑔 ∈ 𝑋 ) → ( ( ( 𝑓 ‘ 1 ) − ( 𝑔 ‘ 1 ) ) ↑ 2 ) ∈ ℂ ) |
40 |
|
2ex |
⊢ 2 ∈ V |
41 |
40
|
prid2 |
⊢ 2 ∈ { 1 , 2 } |
42 |
41
|
a1i |
⊢ ( 𝑓 : { 1 , 2 } ⟶ ℝ → 2 ∈ { 1 , 2 } ) |
43 |
22 42
|
ffvelrnd |
⊢ ( 𝑓 : { 1 , 2 } ⟶ ℝ → ( 𝑓 ‘ 2 ) ∈ ℝ ) |
44 |
21 43
|
sylbi |
⊢ ( 𝑓 ∈ 𝑋 → ( 𝑓 ‘ 2 ) ∈ ℝ ) |
45 |
44
|
adantr |
⊢ ( ( 𝑓 ∈ 𝑋 ∧ 𝑔 ∈ 𝑋 ) → ( 𝑓 ‘ 2 ) ∈ ℝ ) |
46 |
41
|
a1i |
⊢ ( 𝑔 : { 1 , 2 } ⟶ ℝ → 2 ∈ { 1 , 2 } ) |
47 |
32 46
|
ffvelrnd |
⊢ ( 𝑔 : { 1 , 2 } ⟶ ℝ → ( 𝑔 ‘ 2 ) ∈ ℝ ) |
48 |
31 47
|
sylbi |
⊢ ( 𝑔 ∈ 𝑋 → ( 𝑔 ‘ 2 ) ∈ ℝ ) |
49 |
48
|
adantl |
⊢ ( ( 𝑓 ∈ 𝑋 ∧ 𝑔 ∈ 𝑋 ) → ( 𝑔 ‘ 2 ) ∈ ℝ ) |
50 |
45 49
|
resubcld |
⊢ ( ( 𝑓 ∈ 𝑋 ∧ 𝑔 ∈ 𝑋 ) → ( ( 𝑓 ‘ 2 ) − ( 𝑔 ‘ 2 ) ) ∈ ℝ ) |
51 |
50
|
resqcld |
⊢ ( ( 𝑓 ∈ 𝑋 ∧ 𝑔 ∈ 𝑋 ) → ( ( ( 𝑓 ‘ 2 ) − ( 𝑔 ‘ 2 ) ) ↑ 2 ) ∈ ℝ ) |
52 |
51
|
recnd |
⊢ ( ( 𝑓 ∈ 𝑋 ∧ 𝑔 ∈ 𝑋 ) → ( ( ( 𝑓 ‘ 2 ) − ( 𝑔 ‘ 2 ) ) ↑ 2 ) ∈ ℂ ) |
53 |
39 52
|
jca |
⊢ ( ( 𝑓 ∈ 𝑋 ∧ 𝑔 ∈ 𝑋 ) → ( ( ( ( 𝑓 ‘ 1 ) − ( 𝑔 ‘ 1 ) ) ↑ 2 ) ∈ ℂ ∧ ( ( ( 𝑓 ‘ 2 ) − ( 𝑔 ‘ 2 ) ) ↑ 2 ) ∈ ℂ ) ) |
54 |
23 40
|
pm3.2i |
⊢ ( 1 ∈ V ∧ 2 ∈ V ) |
55 |
54
|
a1i |
⊢ ( ( 𝑓 ∈ 𝑋 ∧ 𝑔 ∈ 𝑋 ) → ( 1 ∈ V ∧ 2 ∈ V ) ) |
56 |
|
1ne2 |
⊢ 1 ≠ 2 |
57 |
56
|
a1i |
⊢ ( ( 𝑓 ∈ 𝑋 ∧ 𝑔 ∈ 𝑋 ) → 1 ≠ 2 ) |
58 |
12 16 53 55 57
|
sumpr |
⊢ ( ( 𝑓 ∈ 𝑋 ∧ 𝑔 ∈ 𝑋 ) → Σ 𝑘 ∈ { 1 , 2 } ( ( ( 𝑓 ‘ 𝑘 ) − ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) = ( ( ( ( 𝑓 ‘ 1 ) − ( 𝑔 ‘ 1 ) ) ↑ 2 ) + ( ( ( 𝑓 ‘ 2 ) − ( 𝑔 ‘ 2 ) ) ↑ 2 ) ) ) |
59 |
58
|
fveq2d |
⊢ ( ( 𝑓 ∈ 𝑋 ∧ 𝑔 ∈ 𝑋 ) → ( √ ‘ Σ 𝑘 ∈ { 1 , 2 } ( ( ( 𝑓 ‘ 𝑘 ) − ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) ) = ( √ ‘ ( ( ( ( 𝑓 ‘ 1 ) − ( 𝑔 ‘ 1 ) ) ↑ 2 ) + ( ( ( 𝑓 ‘ 2 ) − ( 𝑔 ‘ 2 ) ) ↑ 2 ) ) ) ) |
60 |
59
|
mpoeq3ia |
⊢ ( 𝑓 ∈ 𝑋 , 𝑔 ∈ 𝑋 ↦ ( √ ‘ Σ 𝑘 ∈ { 1 , 2 } ( ( ( 𝑓 ‘ 𝑘 ) − ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) ) ) = ( 𝑓 ∈ 𝑋 , 𝑔 ∈ 𝑋 ↦ ( √ ‘ ( ( ( ( 𝑓 ‘ 1 ) − ( 𝑔 ‘ 1 ) ) ↑ 2 ) + ( ( ( 𝑓 ‘ 2 ) − ( 𝑔 ‘ 2 ) ) ↑ 2 ) ) ) ) |
61 |
8 60
|
eqtri |
⊢ 𝐷 = ( 𝑓 ∈ 𝑋 , 𝑔 ∈ 𝑋 ↦ ( √ ‘ ( ( ( ( 𝑓 ‘ 1 ) − ( 𝑔 ‘ 1 ) ) ↑ 2 ) + ( ( ( 𝑓 ‘ 2 ) − ( 𝑔 ‘ 2 ) ) ↑ 2 ) ) ) ) |