Step |
Hyp |
Ref |
Expression |
1 |
|
ehl2eudisval0.e |
⊢ 𝐸 = ( 𝔼hil ‘ 2 ) |
2 |
|
ehl2eudisval0.x |
⊢ 𝑋 = ( ℝ ↑m { 1 , 2 } ) |
3 |
|
ehl2eudisval0.d |
⊢ 𝐷 = ( dist ‘ 𝐸 ) |
4 |
|
ehl2eudisval0.0 |
⊢ 0 = ( { 1 , 2 } × { 0 } ) |
5 |
1 2 3 4
|
ehl2eudisval0 |
⊢ ( 𝐹 ∈ 𝑋 → ( 𝐹 𝐷 0 ) = ( √ ‘ ( ( ( 𝐹 ‘ 1 ) ↑ 2 ) + ( ( 𝐹 ‘ 2 ) ↑ 2 ) ) ) ) |
6 |
5
|
adantr |
⊢ ( ( 𝐹 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+ ) → ( 𝐹 𝐷 0 ) = ( √ ‘ ( ( ( 𝐹 ‘ 1 ) ↑ 2 ) + ( ( 𝐹 ‘ 2 ) ↑ 2 ) ) ) ) |
7 |
6
|
breq1d |
⊢ ( ( 𝐹 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+ ) → ( ( 𝐹 𝐷 0 ) < 𝑅 ↔ ( √ ‘ ( ( ( 𝐹 ‘ 1 ) ↑ 2 ) + ( ( 𝐹 ‘ 2 ) ↑ 2 ) ) ) < 𝑅 ) ) |
8 |
|
eqid |
⊢ { 1 , 2 } = { 1 , 2 } |
9 |
8 2
|
rrx2pxel |
⊢ ( 𝐹 ∈ 𝑋 → ( 𝐹 ‘ 1 ) ∈ ℝ ) |
10 |
8 2
|
rrx2pyel |
⊢ ( 𝐹 ∈ 𝑋 → ( 𝐹 ‘ 2 ) ∈ ℝ ) |
11 |
|
eqid |
⊢ ( ( ( 𝐹 ‘ 1 ) ↑ 2 ) + ( ( 𝐹 ‘ 2 ) ↑ 2 ) ) = ( ( ( 𝐹 ‘ 1 ) ↑ 2 ) + ( ( 𝐹 ‘ 2 ) ↑ 2 ) ) |
12 |
11
|
resum2sqcl |
⊢ ( ( ( 𝐹 ‘ 1 ) ∈ ℝ ∧ ( 𝐹 ‘ 2 ) ∈ ℝ ) → ( ( ( 𝐹 ‘ 1 ) ↑ 2 ) + ( ( 𝐹 ‘ 2 ) ↑ 2 ) ) ∈ ℝ ) |
13 |
9 10 12
|
syl2anc |
⊢ ( 𝐹 ∈ 𝑋 → ( ( ( 𝐹 ‘ 1 ) ↑ 2 ) + ( ( 𝐹 ‘ 2 ) ↑ 2 ) ) ∈ ℝ ) |
14 |
|
resqcl |
⊢ ( ( 𝐹 ‘ 1 ) ∈ ℝ → ( ( 𝐹 ‘ 1 ) ↑ 2 ) ∈ ℝ ) |
15 |
|
resqcl |
⊢ ( ( 𝐹 ‘ 2 ) ∈ ℝ → ( ( 𝐹 ‘ 2 ) ↑ 2 ) ∈ ℝ ) |
16 |
14 15
|
anim12i |
⊢ ( ( ( 𝐹 ‘ 1 ) ∈ ℝ ∧ ( 𝐹 ‘ 2 ) ∈ ℝ ) → ( ( ( 𝐹 ‘ 1 ) ↑ 2 ) ∈ ℝ ∧ ( ( 𝐹 ‘ 2 ) ↑ 2 ) ∈ ℝ ) ) |
17 |
|
sqge0 |
⊢ ( ( 𝐹 ‘ 1 ) ∈ ℝ → 0 ≤ ( ( 𝐹 ‘ 1 ) ↑ 2 ) ) |
18 |
|
sqge0 |
⊢ ( ( 𝐹 ‘ 2 ) ∈ ℝ → 0 ≤ ( ( 𝐹 ‘ 2 ) ↑ 2 ) ) |
19 |
17 18
|
anim12i |
⊢ ( ( ( 𝐹 ‘ 1 ) ∈ ℝ ∧ ( 𝐹 ‘ 2 ) ∈ ℝ ) → ( 0 ≤ ( ( 𝐹 ‘ 1 ) ↑ 2 ) ∧ 0 ≤ ( ( 𝐹 ‘ 2 ) ↑ 2 ) ) ) |
20 |
|
addge0 |
⊢ ( ( ( ( ( 𝐹 ‘ 1 ) ↑ 2 ) ∈ ℝ ∧ ( ( 𝐹 ‘ 2 ) ↑ 2 ) ∈ ℝ ) ∧ ( 0 ≤ ( ( 𝐹 ‘ 1 ) ↑ 2 ) ∧ 0 ≤ ( ( 𝐹 ‘ 2 ) ↑ 2 ) ) ) → 0 ≤ ( ( ( 𝐹 ‘ 1 ) ↑ 2 ) + ( ( 𝐹 ‘ 2 ) ↑ 2 ) ) ) |
21 |
16 19 20
|
syl2anc |
⊢ ( ( ( 𝐹 ‘ 1 ) ∈ ℝ ∧ ( 𝐹 ‘ 2 ) ∈ ℝ ) → 0 ≤ ( ( ( 𝐹 ‘ 1 ) ↑ 2 ) + ( ( 𝐹 ‘ 2 ) ↑ 2 ) ) ) |
22 |
9 10 21
|
syl2anc |
⊢ ( 𝐹 ∈ 𝑋 → 0 ≤ ( ( ( 𝐹 ‘ 1 ) ↑ 2 ) + ( ( 𝐹 ‘ 2 ) ↑ 2 ) ) ) |
23 |
13 22
|
resqrtcld |
⊢ ( 𝐹 ∈ 𝑋 → ( √ ‘ ( ( ( 𝐹 ‘ 1 ) ↑ 2 ) + ( ( 𝐹 ‘ 2 ) ↑ 2 ) ) ) ∈ ℝ ) |
24 |
13 22
|
sqrtge0d |
⊢ ( 𝐹 ∈ 𝑋 → 0 ≤ ( √ ‘ ( ( ( 𝐹 ‘ 1 ) ↑ 2 ) + ( ( 𝐹 ‘ 2 ) ↑ 2 ) ) ) ) |
25 |
23 24
|
jca |
⊢ ( 𝐹 ∈ 𝑋 → ( ( √ ‘ ( ( ( 𝐹 ‘ 1 ) ↑ 2 ) + ( ( 𝐹 ‘ 2 ) ↑ 2 ) ) ) ∈ ℝ ∧ 0 ≤ ( √ ‘ ( ( ( 𝐹 ‘ 1 ) ↑ 2 ) + ( ( 𝐹 ‘ 2 ) ↑ 2 ) ) ) ) ) |
26 |
|
rprege0 |
⊢ ( 𝑅 ∈ ℝ+ → ( 𝑅 ∈ ℝ ∧ 0 ≤ 𝑅 ) ) |
27 |
|
lt2sq |
⊢ ( ( ( ( √ ‘ ( ( ( 𝐹 ‘ 1 ) ↑ 2 ) + ( ( 𝐹 ‘ 2 ) ↑ 2 ) ) ) ∈ ℝ ∧ 0 ≤ ( √ ‘ ( ( ( 𝐹 ‘ 1 ) ↑ 2 ) + ( ( 𝐹 ‘ 2 ) ↑ 2 ) ) ) ) ∧ ( 𝑅 ∈ ℝ ∧ 0 ≤ 𝑅 ) ) → ( ( √ ‘ ( ( ( 𝐹 ‘ 1 ) ↑ 2 ) + ( ( 𝐹 ‘ 2 ) ↑ 2 ) ) ) < 𝑅 ↔ ( ( √ ‘ ( ( ( 𝐹 ‘ 1 ) ↑ 2 ) + ( ( 𝐹 ‘ 2 ) ↑ 2 ) ) ) ↑ 2 ) < ( 𝑅 ↑ 2 ) ) ) |
28 |
25 26 27
|
syl2an |
⊢ ( ( 𝐹 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+ ) → ( ( √ ‘ ( ( ( 𝐹 ‘ 1 ) ↑ 2 ) + ( ( 𝐹 ‘ 2 ) ↑ 2 ) ) ) < 𝑅 ↔ ( ( √ ‘ ( ( ( 𝐹 ‘ 1 ) ↑ 2 ) + ( ( 𝐹 ‘ 2 ) ↑ 2 ) ) ) ↑ 2 ) < ( 𝑅 ↑ 2 ) ) ) |
29 |
13 22
|
jca |
⊢ ( 𝐹 ∈ 𝑋 → ( ( ( ( 𝐹 ‘ 1 ) ↑ 2 ) + ( ( 𝐹 ‘ 2 ) ↑ 2 ) ) ∈ ℝ ∧ 0 ≤ ( ( ( 𝐹 ‘ 1 ) ↑ 2 ) + ( ( 𝐹 ‘ 2 ) ↑ 2 ) ) ) ) |
30 |
29
|
adantr |
⊢ ( ( 𝐹 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+ ) → ( ( ( ( 𝐹 ‘ 1 ) ↑ 2 ) + ( ( 𝐹 ‘ 2 ) ↑ 2 ) ) ∈ ℝ ∧ 0 ≤ ( ( ( 𝐹 ‘ 1 ) ↑ 2 ) + ( ( 𝐹 ‘ 2 ) ↑ 2 ) ) ) ) |
31 |
|
resqrtth |
⊢ ( ( ( ( ( 𝐹 ‘ 1 ) ↑ 2 ) + ( ( 𝐹 ‘ 2 ) ↑ 2 ) ) ∈ ℝ ∧ 0 ≤ ( ( ( 𝐹 ‘ 1 ) ↑ 2 ) + ( ( 𝐹 ‘ 2 ) ↑ 2 ) ) ) → ( ( √ ‘ ( ( ( 𝐹 ‘ 1 ) ↑ 2 ) + ( ( 𝐹 ‘ 2 ) ↑ 2 ) ) ) ↑ 2 ) = ( ( ( 𝐹 ‘ 1 ) ↑ 2 ) + ( ( 𝐹 ‘ 2 ) ↑ 2 ) ) ) |
32 |
30 31
|
syl |
⊢ ( ( 𝐹 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+ ) → ( ( √ ‘ ( ( ( 𝐹 ‘ 1 ) ↑ 2 ) + ( ( 𝐹 ‘ 2 ) ↑ 2 ) ) ) ↑ 2 ) = ( ( ( 𝐹 ‘ 1 ) ↑ 2 ) + ( ( 𝐹 ‘ 2 ) ↑ 2 ) ) ) |
33 |
32
|
breq1d |
⊢ ( ( 𝐹 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+ ) → ( ( ( √ ‘ ( ( ( 𝐹 ‘ 1 ) ↑ 2 ) + ( ( 𝐹 ‘ 2 ) ↑ 2 ) ) ) ↑ 2 ) < ( 𝑅 ↑ 2 ) ↔ ( ( ( 𝐹 ‘ 1 ) ↑ 2 ) + ( ( 𝐹 ‘ 2 ) ↑ 2 ) ) < ( 𝑅 ↑ 2 ) ) ) |
34 |
7 28 33
|
3bitrd |
⊢ ( ( 𝐹 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+ ) → ( ( 𝐹 𝐷 0 ) < 𝑅 ↔ ( ( ( 𝐹 ‘ 1 ) ↑ 2 ) + ( ( 𝐹 ‘ 2 ) ↑ 2 ) ) < ( 𝑅 ↑ 2 ) ) ) |