Step |
Hyp |
Ref |
Expression |
1 |
|
ehl2eudis.e |
⊢ 𝐸 = ( 𝔼hil ‘ 2 ) |
2 |
|
ehl2eudis.x |
⊢ 𝑋 = ( ℝ ↑m { 1 , 2 } ) |
3 |
|
ehl2eudis.d |
⊢ 𝐷 = ( dist ‘ 𝐸 ) |
4 |
1 2 3
|
ehl2eudis |
⊢ 𝐷 = ( 𝑓 ∈ 𝑋 , 𝑔 ∈ 𝑋 ↦ ( √ ‘ ( ( ( ( 𝑓 ‘ 1 ) − ( 𝑔 ‘ 1 ) ) ↑ 2 ) + ( ( ( 𝑓 ‘ 2 ) − ( 𝑔 ‘ 2 ) ) ↑ 2 ) ) ) ) |
5 |
4
|
oveqi |
⊢ ( 𝐹 𝐷 𝐺 ) = ( 𝐹 ( 𝑓 ∈ 𝑋 , 𝑔 ∈ 𝑋 ↦ ( √ ‘ ( ( ( ( 𝑓 ‘ 1 ) − ( 𝑔 ‘ 1 ) ) ↑ 2 ) + ( ( ( 𝑓 ‘ 2 ) − ( 𝑔 ‘ 2 ) ) ↑ 2 ) ) ) ) 𝐺 ) |
6 |
|
eqidd |
⊢ ( ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) → ( 𝑓 ∈ 𝑋 , 𝑔 ∈ 𝑋 ↦ ( √ ‘ ( ( ( ( 𝑓 ‘ 1 ) − ( 𝑔 ‘ 1 ) ) ↑ 2 ) + ( ( ( 𝑓 ‘ 2 ) − ( 𝑔 ‘ 2 ) ) ↑ 2 ) ) ) ) = ( 𝑓 ∈ 𝑋 , 𝑔 ∈ 𝑋 ↦ ( √ ‘ ( ( ( ( 𝑓 ‘ 1 ) − ( 𝑔 ‘ 1 ) ) ↑ 2 ) + ( ( ( 𝑓 ‘ 2 ) − ( 𝑔 ‘ 2 ) ) ↑ 2 ) ) ) ) ) |
7 |
|
fveq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 1 ) = ( 𝐹 ‘ 1 ) ) |
8 |
|
fveq1 |
⊢ ( 𝑔 = 𝐺 → ( 𝑔 ‘ 1 ) = ( 𝐺 ‘ 1 ) ) |
9 |
7 8
|
oveqan12d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( ( 𝑓 ‘ 1 ) − ( 𝑔 ‘ 1 ) ) = ( ( 𝐹 ‘ 1 ) − ( 𝐺 ‘ 1 ) ) ) |
10 |
9
|
oveq1d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( ( ( 𝑓 ‘ 1 ) − ( 𝑔 ‘ 1 ) ) ↑ 2 ) = ( ( ( 𝐹 ‘ 1 ) − ( 𝐺 ‘ 1 ) ) ↑ 2 ) ) |
11 |
|
fveq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 2 ) = ( 𝐹 ‘ 2 ) ) |
12 |
|
fveq1 |
⊢ ( 𝑔 = 𝐺 → ( 𝑔 ‘ 2 ) = ( 𝐺 ‘ 2 ) ) |
13 |
11 12
|
oveqan12d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( ( 𝑓 ‘ 2 ) − ( 𝑔 ‘ 2 ) ) = ( ( 𝐹 ‘ 2 ) − ( 𝐺 ‘ 2 ) ) ) |
14 |
13
|
oveq1d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( ( ( 𝑓 ‘ 2 ) − ( 𝑔 ‘ 2 ) ) ↑ 2 ) = ( ( ( 𝐹 ‘ 2 ) − ( 𝐺 ‘ 2 ) ) ↑ 2 ) ) |
15 |
10 14
|
oveq12d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( ( ( ( 𝑓 ‘ 1 ) − ( 𝑔 ‘ 1 ) ) ↑ 2 ) + ( ( ( 𝑓 ‘ 2 ) − ( 𝑔 ‘ 2 ) ) ↑ 2 ) ) = ( ( ( ( 𝐹 ‘ 1 ) − ( 𝐺 ‘ 1 ) ) ↑ 2 ) + ( ( ( 𝐹 ‘ 2 ) − ( 𝐺 ‘ 2 ) ) ↑ 2 ) ) ) |
16 |
15
|
fveq2d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( √ ‘ ( ( ( ( 𝑓 ‘ 1 ) − ( 𝑔 ‘ 1 ) ) ↑ 2 ) + ( ( ( 𝑓 ‘ 2 ) − ( 𝑔 ‘ 2 ) ) ↑ 2 ) ) ) = ( √ ‘ ( ( ( ( 𝐹 ‘ 1 ) − ( 𝐺 ‘ 1 ) ) ↑ 2 ) + ( ( ( 𝐹 ‘ 2 ) − ( 𝐺 ‘ 2 ) ) ↑ 2 ) ) ) ) |
17 |
16
|
adantl |
⊢ ( ( ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) ∧ ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) ) → ( √ ‘ ( ( ( ( 𝑓 ‘ 1 ) − ( 𝑔 ‘ 1 ) ) ↑ 2 ) + ( ( ( 𝑓 ‘ 2 ) − ( 𝑔 ‘ 2 ) ) ↑ 2 ) ) ) = ( √ ‘ ( ( ( ( 𝐹 ‘ 1 ) − ( 𝐺 ‘ 1 ) ) ↑ 2 ) + ( ( ( 𝐹 ‘ 2 ) − ( 𝐺 ‘ 2 ) ) ↑ 2 ) ) ) ) |
18 |
|
simpl |
⊢ ( ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) → 𝐹 ∈ 𝑋 ) |
19 |
|
simpr |
⊢ ( ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) → 𝐺 ∈ 𝑋 ) |
20 |
|
fvexd |
⊢ ( ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) → ( √ ‘ ( ( ( ( 𝐹 ‘ 1 ) − ( 𝐺 ‘ 1 ) ) ↑ 2 ) + ( ( ( 𝐹 ‘ 2 ) − ( 𝐺 ‘ 2 ) ) ↑ 2 ) ) ) ∈ V ) |
21 |
6 17 18 19 20
|
ovmpod |
⊢ ( ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) → ( 𝐹 ( 𝑓 ∈ 𝑋 , 𝑔 ∈ 𝑋 ↦ ( √ ‘ ( ( ( ( 𝑓 ‘ 1 ) − ( 𝑔 ‘ 1 ) ) ↑ 2 ) + ( ( ( 𝑓 ‘ 2 ) − ( 𝑔 ‘ 2 ) ) ↑ 2 ) ) ) ) 𝐺 ) = ( √ ‘ ( ( ( ( 𝐹 ‘ 1 ) − ( 𝐺 ‘ 1 ) ) ↑ 2 ) + ( ( ( 𝐹 ‘ 2 ) − ( 𝐺 ‘ 2 ) ) ↑ 2 ) ) ) ) |
22 |
5 21
|
syl5eq |
⊢ ( ( 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) → ( 𝐹 𝐷 𝐺 ) = ( √ ‘ ( ( ( ( 𝐹 ‘ 1 ) − ( 𝐺 ‘ 1 ) ) ↑ 2 ) + ( ( ( 𝐹 ‘ 2 ) − ( 𝐺 ‘ 2 ) ) ↑ 2 ) ) ) ) |