| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ehl2eudisval0.e |
⊢ 𝐸 = ( 𝔼hil ‘ 2 ) |
| 2 |
|
ehl2eudisval0.x |
⊢ 𝑋 = ( ℝ ↑m { 1 , 2 } ) |
| 3 |
|
ehl2eudisval0.d |
⊢ 𝐷 = ( dist ‘ 𝐸 ) |
| 4 |
|
ehl2eudisval0.0 |
⊢ 0 = ( { 1 , 2 } × { 0 } ) |
| 5 |
|
prex |
⊢ { 1 , 2 } ∈ V |
| 6 |
4 2
|
rrx0el |
⊢ ( { 1 , 2 } ∈ V → 0 ∈ 𝑋 ) |
| 7 |
5 6
|
mp1i |
⊢ ( 𝐹 ∈ 𝑋 → 0 ∈ 𝑋 ) |
| 8 |
1 2 3
|
ehl2eudisval |
⊢ ( ( 𝐹 ∈ 𝑋 ∧ 0 ∈ 𝑋 ) → ( 𝐹 𝐷 0 ) = ( √ ‘ ( ( ( ( 𝐹 ‘ 1 ) − ( 0 ‘ 1 ) ) ↑ 2 ) + ( ( ( 𝐹 ‘ 2 ) − ( 0 ‘ 2 ) ) ↑ 2 ) ) ) ) |
| 9 |
7 8
|
mpdan |
⊢ ( 𝐹 ∈ 𝑋 → ( 𝐹 𝐷 0 ) = ( √ ‘ ( ( ( ( 𝐹 ‘ 1 ) − ( 0 ‘ 1 ) ) ↑ 2 ) + ( ( ( 𝐹 ‘ 2 ) − ( 0 ‘ 2 ) ) ↑ 2 ) ) ) ) |
| 10 |
|
1ex |
⊢ 1 ∈ V |
| 11 |
|
2ex |
⊢ 2 ∈ V |
| 12 |
|
c0ex |
⊢ 0 ∈ V |
| 13 |
|
xpprsng |
⊢ ( ( 1 ∈ V ∧ 2 ∈ V ∧ 0 ∈ V ) → ( { 1 , 2 } × { 0 } ) = { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ) |
| 14 |
10 11 12 13
|
mp3an |
⊢ ( { 1 , 2 } × { 0 } ) = { 〈 1 , 0 〉 , 〈 2 , 0 〉 } |
| 15 |
4 14
|
eqtri |
⊢ 0 = { 〈 1 , 0 〉 , 〈 2 , 0 〉 } |
| 16 |
15
|
fveq1i |
⊢ ( 0 ‘ 1 ) = ( { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ‘ 1 ) |
| 17 |
|
1ne2 |
⊢ 1 ≠ 2 |
| 18 |
10 12
|
fvpr1 |
⊢ ( 1 ≠ 2 → ( { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ‘ 1 ) = 0 ) |
| 19 |
17 18
|
ax-mp |
⊢ ( { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ‘ 1 ) = 0 |
| 20 |
16 19
|
eqtri |
⊢ ( 0 ‘ 1 ) = 0 |
| 21 |
20
|
a1i |
⊢ ( 𝐹 ∈ 𝑋 → ( 0 ‘ 1 ) = 0 ) |
| 22 |
21
|
oveq2d |
⊢ ( 𝐹 ∈ 𝑋 → ( ( 𝐹 ‘ 1 ) − ( 0 ‘ 1 ) ) = ( ( 𝐹 ‘ 1 ) − 0 ) ) |
| 23 |
|
eqid |
⊢ { 1 , 2 } = { 1 , 2 } |
| 24 |
23 2
|
rrx2pxel |
⊢ ( 𝐹 ∈ 𝑋 → ( 𝐹 ‘ 1 ) ∈ ℝ ) |
| 25 |
24
|
recnd |
⊢ ( 𝐹 ∈ 𝑋 → ( 𝐹 ‘ 1 ) ∈ ℂ ) |
| 26 |
25
|
subid1d |
⊢ ( 𝐹 ∈ 𝑋 → ( ( 𝐹 ‘ 1 ) − 0 ) = ( 𝐹 ‘ 1 ) ) |
| 27 |
22 26
|
eqtrd |
⊢ ( 𝐹 ∈ 𝑋 → ( ( 𝐹 ‘ 1 ) − ( 0 ‘ 1 ) ) = ( 𝐹 ‘ 1 ) ) |
| 28 |
27
|
oveq1d |
⊢ ( 𝐹 ∈ 𝑋 → ( ( ( 𝐹 ‘ 1 ) − ( 0 ‘ 1 ) ) ↑ 2 ) = ( ( 𝐹 ‘ 1 ) ↑ 2 ) ) |
| 29 |
15
|
fveq1i |
⊢ ( 0 ‘ 2 ) = ( { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ‘ 2 ) |
| 30 |
11 12
|
fvpr2 |
⊢ ( 1 ≠ 2 → ( { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ‘ 2 ) = 0 ) |
| 31 |
17 30
|
mp1i |
⊢ ( 𝐹 ∈ 𝑋 → ( { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ‘ 2 ) = 0 ) |
| 32 |
29 31
|
eqtrid |
⊢ ( 𝐹 ∈ 𝑋 → ( 0 ‘ 2 ) = 0 ) |
| 33 |
32
|
oveq2d |
⊢ ( 𝐹 ∈ 𝑋 → ( ( 𝐹 ‘ 2 ) − ( 0 ‘ 2 ) ) = ( ( 𝐹 ‘ 2 ) − 0 ) ) |
| 34 |
23 2
|
rrx2pyel |
⊢ ( 𝐹 ∈ 𝑋 → ( 𝐹 ‘ 2 ) ∈ ℝ ) |
| 35 |
34
|
recnd |
⊢ ( 𝐹 ∈ 𝑋 → ( 𝐹 ‘ 2 ) ∈ ℂ ) |
| 36 |
35
|
subid1d |
⊢ ( 𝐹 ∈ 𝑋 → ( ( 𝐹 ‘ 2 ) − 0 ) = ( 𝐹 ‘ 2 ) ) |
| 37 |
33 36
|
eqtrd |
⊢ ( 𝐹 ∈ 𝑋 → ( ( 𝐹 ‘ 2 ) − ( 0 ‘ 2 ) ) = ( 𝐹 ‘ 2 ) ) |
| 38 |
37
|
oveq1d |
⊢ ( 𝐹 ∈ 𝑋 → ( ( ( 𝐹 ‘ 2 ) − ( 0 ‘ 2 ) ) ↑ 2 ) = ( ( 𝐹 ‘ 2 ) ↑ 2 ) ) |
| 39 |
28 38
|
oveq12d |
⊢ ( 𝐹 ∈ 𝑋 → ( ( ( ( 𝐹 ‘ 1 ) − ( 0 ‘ 1 ) ) ↑ 2 ) + ( ( ( 𝐹 ‘ 2 ) − ( 0 ‘ 2 ) ) ↑ 2 ) ) = ( ( ( 𝐹 ‘ 1 ) ↑ 2 ) + ( ( 𝐹 ‘ 2 ) ↑ 2 ) ) ) |
| 40 |
39
|
fveq2d |
⊢ ( 𝐹 ∈ 𝑋 → ( √ ‘ ( ( ( ( 𝐹 ‘ 1 ) − ( 0 ‘ 1 ) ) ↑ 2 ) + ( ( ( 𝐹 ‘ 2 ) − ( 0 ‘ 2 ) ) ↑ 2 ) ) ) = ( √ ‘ ( ( ( 𝐹 ‘ 1 ) ↑ 2 ) + ( ( 𝐹 ‘ 2 ) ↑ 2 ) ) ) ) |
| 41 |
9 40
|
eqtrd |
⊢ ( 𝐹 ∈ 𝑋 → ( 𝐹 𝐷 0 ) = ( √ ‘ ( ( ( 𝐹 ‘ 1 ) ↑ 2 ) + ( ( 𝐹 ‘ 2 ) ↑ 2 ) ) ) ) |