Metamath Proof Explorer


Theorem ehl2eudisval0

Description: The Euclidean distance of a point to the origin in a real Euclidean space of dimension 2. (Contributed by AV, 26-Feb-2023)

Ref Expression
Hypotheses ehl2eudisval0.e 𝐸 = ( 𝔼hil ‘ 2 )
ehl2eudisval0.x 𝑋 = ( ℝ ↑m { 1 , 2 } )
ehl2eudisval0.d 𝐷 = ( dist ‘ 𝐸 )
ehl2eudisval0.0 0 = ( { 1 , 2 } × { 0 } )
Assertion ehl2eudisval0 ( 𝐹𝑋 → ( 𝐹 𝐷 0 ) = ( √ ‘ ( ( ( 𝐹 ‘ 1 ) ↑ 2 ) + ( ( 𝐹 ‘ 2 ) ↑ 2 ) ) ) )

Proof

Step Hyp Ref Expression
1 ehl2eudisval0.e 𝐸 = ( 𝔼hil ‘ 2 )
2 ehl2eudisval0.x 𝑋 = ( ℝ ↑m { 1 , 2 } )
3 ehl2eudisval0.d 𝐷 = ( dist ‘ 𝐸 )
4 ehl2eudisval0.0 0 = ( { 1 , 2 } × { 0 } )
5 prex { 1 , 2 } ∈ V
6 4 2 rrx0el ( { 1 , 2 } ∈ V → 0𝑋 )
7 5 6 mp1i ( 𝐹𝑋0𝑋 )
8 1 2 3 ehl2eudisval ( ( 𝐹𝑋0𝑋 ) → ( 𝐹 𝐷 0 ) = ( √ ‘ ( ( ( ( 𝐹 ‘ 1 ) − ( 0 ‘ 1 ) ) ↑ 2 ) + ( ( ( 𝐹 ‘ 2 ) − ( 0 ‘ 2 ) ) ↑ 2 ) ) ) )
9 7 8 mpdan ( 𝐹𝑋 → ( 𝐹 𝐷 0 ) = ( √ ‘ ( ( ( ( 𝐹 ‘ 1 ) − ( 0 ‘ 1 ) ) ↑ 2 ) + ( ( ( 𝐹 ‘ 2 ) − ( 0 ‘ 2 ) ) ↑ 2 ) ) ) )
10 1ex 1 ∈ V
11 2ex 2 ∈ V
12 c0ex 0 ∈ V
13 xpprsng ( ( 1 ∈ V ∧ 2 ∈ V ∧ 0 ∈ V ) → ( { 1 , 2 } × { 0 } ) = { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } )
14 10 11 12 13 mp3an ( { 1 , 2 } × { 0 } ) = { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ }
15 4 14 eqtri 0 = { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ }
16 15 fveq1i ( 0 ‘ 1 ) = ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ‘ 1 )
17 1ne2 1 ≠ 2
18 10 12 fvpr1 ( 1 ≠ 2 → ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ‘ 1 ) = 0 )
19 17 18 ax-mp ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ‘ 1 ) = 0
20 16 19 eqtri ( 0 ‘ 1 ) = 0
21 20 a1i ( 𝐹𝑋 → ( 0 ‘ 1 ) = 0 )
22 21 oveq2d ( 𝐹𝑋 → ( ( 𝐹 ‘ 1 ) − ( 0 ‘ 1 ) ) = ( ( 𝐹 ‘ 1 ) − 0 ) )
23 eqid { 1 , 2 } = { 1 , 2 }
24 23 2 rrx2pxel ( 𝐹𝑋 → ( 𝐹 ‘ 1 ) ∈ ℝ )
25 24 recnd ( 𝐹𝑋 → ( 𝐹 ‘ 1 ) ∈ ℂ )
26 25 subid1d ( 𝐹𝑋 → ( ( 𝐹 ‘ 1 ) − 0 ) = ( 𝐹 ‘ 1 ) )
27 22 26 eqtrd ( 𝐹𝑋 → ( ( 𝐹 ‘ 1 ) − ( 0 ‘ 1 ) ) = ( 𝐹 ‘ 1 ) )
28 27 oveq1d ( 𝐹𝑋 → ( ( ( 𝐹 ‘ 1 ) − ( 0 ‘ 1 ) ) ↑ 2 ) = ( ( 𝐹 ‘ 1 ) ↑ 2 ) )
29 15 fveq1i ( 0 ‘ 2 ) = ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ‘ 2 )
30 11 12 fvpr2 ( 1 ≠ 2 → ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ‘ 2 ) = 0 )
31 17 30 mp1i ( 𝐹𝑋 → ( { ⟨ 1 , 0 ⟩ , ⟨ 2 , 0 ⟩ } ‘ 2 ) = 0 )
32 29 31 syl5eq ( 𝐹𝑋 → ( 0 ‘ 2 ) = 0 )
33 32 oveq2d ( 𝐹𝑋 → ( ( 𝐹 ‘ 2 ) − ( 0 ‘ 2 ) ) = ( ( 𝐹 ‘ 2 ) − 0 ) )
34 23 2 rrx2pyel ( 𝐹𝑋 → ( 𝐹 ‘ 2 ) ∈ ℝ )
35 34 recnd ( 𝐹𝑋 → ( 𝐹 ‘ 2 ) ∈ ℂ )
36 35 subid1d ( 𝐹𝑋 → ( ( 𝐹 ‘ 2 ) − 0 ) = ( 𝐹 ‘ 2 ) )
37 33 36 eqtrd ( 𝐹𝑋 → ( ( 𝐹 ‘ 2 ) − ( 0 ‘ 2 ) ) = ( 𝐹 ‘ 2 ) )
38 37 oveq1d ( 𝐹𝑋 → ( ( ( 𝐹 ‘ 2 ) − ( 0 ‘ 2 ) ) ↑ 2 ) = ( ( 𝐹 ‘ 2 ) ↑ 2 ) )
39 28 38 oveq12d ( 𝐹𝑋 → ( ( ( ( 𝐹 ‘ 1 ) − ( 0 ‘ 1 ) ) ↑ 2 ) + ( ( ( 𝐹 ‘ 2 ) − ( 0 ‘ 2 ) ) ↑ 2 ) ) = ( ( ( 𝐹 ‘ 1 ) ↑ 2 ) + ( ( 𝐹 ‘ 2 ) ↑ 2 ) ) )
40 39 fveq2d ( 𝐹𝑋 → ( √ ‘ ( ( ( ( 𝐹 ‘ 1 ) − ( 0 ‘ 1 ) ) ↑ 2 ) + ( ( ( 𝐹 ‘ 2 ) − ( 0 ‘ 2 ) ) ↑ 2 ) ) ) = ( √ ‘ ( ( ( 𝐹 ‘ 1 ) ↑ 2 ) + ( ( 𝐹 ‘ 2 ) ↑ 2 ) ) ) )
41 9 40 eqtrd ( 𝐹𝑋 → ( 𝐹 𝐷 0 ) = ( √ ‘ ( ( ( 𝐹 ‘ 1 ) ↑ 2 ) + ( ( 𝐹 ‘ 2 ) ↑ 2 ) ) ) )