Step |
Hyp |
Ref |
Expression |
1 |
|
ehlval.e |
⊢ 𝐸 = ( 𝔼hil ‘ 𝑁 ) |
2 |
|
rabid2 |
⊢ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) = { 𝑓 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∣ 𝑓 finSupp 0 } ↔ ∀ 𝑓 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) 𝑓 finSupp 0 ) |
3 |
|
elmapi |
⊢ ( 𝑓 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) → 𝑓 : ( 1 ... 𝑁 ) ⟶ ℝ ) |
4 |
|
fzfid |
⊢ ( 𝑓 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) → ( 1 ... 𝑁 ) ∈ Fin ) |
5 |
|
0red |
⊢ ( 𝑓 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) → 0 ∈ ℝ ) |
6 |
3 4 5
|
fdmfifsupp |
⊢ ( 𝑓 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) → 𝑓 finSupp 0 ) |
7 |
2 6
|
mprgbir |
⊢ ( ℝ ↑m ( 1 ... 𝑁 ) ) = { 𝑓 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∣ 𝑓 finSupp 0 } |
8 |
|
ovex |
⊢ ( 1 ... 𝑁 ) ∈ V |
9 |
|
eqid |
⊢ ( ℝ^ ‘ ( 1 ... 𝑁 ) ) = ( ℝ^ ‘ ( 1 ... 𝑁 ) ) |
10 |
|
eqid |
⊢ ( Base ‘ ( ℝ^ ‘ ( 1 ... 𝑁 ) ) ) = ( Base ‘ ( ℝ^ ‘ ( 1 ... 𝑁 ) ) ) |
11 |
9 10
|
rrxbase |
⊢ ( ( 1 ... 𝑁 ) ∈ V → ( Base ‘ ( ℝ^ ‘ ( 1 ... 𝑁 ) ) ) = { 𝑓 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∣ 𝑓 finSupp 0 } ) |
12 |
8 11
|
ax-mp |
⊢ ( Base ‘ ( ℝ^ ‘ ( 1 ... 𝑁 ) ) ) = { 𝑓 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∣ 𝑓 finSupp 0 } |
13 |
7 12
|
eqtr4i |
⊢ ( ℝ ↑m ( 1 ... 𝑁 ) ) = ( Base ‘ ( ℝ^ ‘ ( 1 ... 𝑁 ) ) ) |
14 |
1
|
ehlval |
⊢ ( 𝑁 ∈ ℕ0 → 𝐸 = ( ℝ^ ‘ ( 1 ... 𝑁 ) ) ) |
15 |
14
|
fveq2d |
⊢ ( 𝑁 ∈ ℕ0 → ( Base ‘ 𝐸 ) = ( Base ‘ ( ℝ^ ‘ ( 1 ... 𝑁 ) ) ) ) |
16 |
13 15
|
eqtr4id |
⊢ ( 𝑁 ∈ ℕ0 → ( ℝ ↑m ( 1 ... 𝑁 ) ) = ( Base ‘ 𝐸 ) ) |