Metamath Proof Explorer


Theorem ehlbase

Description: The base of the Euclidean space is the set of n-tuples of real numbers. (Contributed by Thierry Arnoux, 16-Jun-2019)

Ref Expression
Hypothesis ehlval.e 𝐸 = ( 𝔼hil𝑁 )
Assertion ehlbase ( 𝑁 ∈ ℕ0 → ( ℝ ↑m ( 1 ... 𝑁 ) ) = ( Base ‘ 𝐸 ) )

Proof

Step Hyp Ref Expression
1 ehlval.e 𝐸 = ( 𝔼hil𝑁 )
2 rabid2 ( ( ℝ ↑m ( 1 ... 𝑁 ) ) = { 𝑓 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∣ 𝑓 finSupp 0 } ↔ ∀ 𝑓 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) 𝑓 finSupp 0 )
3 elmapi ( 𝑓 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) → 𝑓 : ( 1 ... 𝑁 ) ⟶ ℝ )
4 fzfid ( 𝑓 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) → ( 1 ... 𝑁 ) ∈ Fin )
5 0red ( 𝑓 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) → 0 ∈ ℝ )
6 3 4 5 fdmfifsupp ( 𝑓 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) → 𝑓 finSupp 0 )
7 2 6 mprgbir ( ℝ ↑m ( 1 ... 𝑁 ) ) = { 𝑓 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∣ 𝑓 finSupp 0 }
8 ovex ( 1 ... 𝑁 ) ∈ V
9 eqid ( ℝ^ ‘ ( 1 ... 𝑁 ) ) = ( ℝ^ ‘ ( 1 ... 𝑁 ) )
10 eqid ( Base ‘ ( ℝ^ ‘ ( 1 ... 𝑁 ) ) ) = ( Base ‘ ( ℝ^ ‘ ( 1 ... 𝑁 ) ) )
11 9 10 rrxbase ( ( 1 ... 𝑁 ) ∈ V → ( Base ‘ ( ℝ^ ‘ ( 1 ... 𝑁 ) ) ) = { 𝑓 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∣ 𝑓 finSupp 0 } )
12 8 11 ax-mp ( Base ‘ ( ℝ^ ‘ ( 1 ... 𝑁 ) ) ) = { 𝑓 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∣ 𝑓 finSupp 0 }
13 7 12 eqtr4i ( ℝ ↑m ( 1 ... 𝑁 ) ) = ( Base ‘ ( ℝ^ ‘ ( 1 ... 𝑁 ) ) )
14 1 ehlval ( 𝑁 ∈ ℕ0𝐸 = ( ℝ^ ‘ ( 1 ... 𝑁 ) ) )
15 14 fveq2d ( 𝑁 ∈ ℕ0 → ( Base ‘ 𝐸 ) = ( Base ‘ ( ℝ^ ‘ ( 1 ... 𝑁 ) ) ) )
16 13 15 eqtr4id ( 𝑁 ∈ ℕ0 → ( ℝ ↑m ( 1 ... 𝑁 ) ) = ( Base ‘ 𝐸 ) )