Step |
Hyp |
Ref |
Expression |
1 |
|
ehleudis.i |
⊢ 𝐼 = ( 1 ... 𝑁 ) |
2 |
|
ehleudis.e |
⊢ 𝐸 = ( 𝔼hil ‘ 𝑁 ) |
3 |
|
ehleudis.x |
⊢ 𝑋 = ( ℝ ↑m 𝐼 ) |
4 |
|
ehleudis.d |
⊢ 𝐷 = ( dist ‘ 𝐸 ) |
5 |
2
|
ehlval |
⊢ ( 𝑁 ∈ ℕ0 → 𝐸 = ( ℝ^ ‘ ( 1 ... 𝑁 ) ) ) |
6 |
5
|
fveq2d |
⊢ ( 𝑁 ∈ ℕ0 → ( dist ‘ 𝐸 ) = ( dist ‘ ( ℝ^ ‘ ( 1 ... 𝑁 ) ) ) ) |
7 |
4 6
|
syl5eq |
⊢ ( 𝑁 ∈ ℕ0 → 𝐷 = ( dist ‘ ( ℝ^ ‘ ( 1 ... 𝑁 ) ) ) ) |
8 |
|
fzfi |
⊢ ( 1 ... 𝑁 ) ∈ Fin |
9 |
1 8
|
eqeltri |
⊢ 𝐼 ∈ Fin |
10 |
1
|
eqcomi |
⊢ ( 1 ... 𝑁 ) = 𝐼 |
11 |
10
|
fveq2i |
⊢ ( ℝ^ ‘ ( 1 ... 𝑁 ) ) = ( ℝ^ ‘ 𝐼 ) |
12 |
11
|
fveq2i |
⊢ ( dist ‘ ( ℝ^ ‘ ( 1 ... 𝑁 ) ) ) = ( dist ‘ ( ℝ^ ‘ 𝐼 ) ) |
13 |
|
eqid |
⊢ ( ℝ^ ‘ 𝐼 ) = ( ℝ^ ‘ 𝐼 ) |
14 |
13 3
|
rrxdsfi |
⊢ ( 𝐼 ∈ Fin → ( dist ‘ ( ℝ^ ‘ 𝐼 ) ) = ( 𝑓 ∈ 𝑋 , 𝑔 ∈ 𝑋 ↦ ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝑓 ‘ 𝑘 ) − ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) ) ) ) |
15 |
12 14
|
syl5eq |
⊢ ( 𝐼 ∈ Fin → ( dist ‘ ( ℝ^ ‘ ( 1 ... 𝑁 ) ) ) = ( 𝑓 ∈ 𝑋 , 𝑔 ∈ 𝑋 ↦ ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝑓 ‘ 𝑘 ) − ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) ) ) ) |
16 |
9 15
|
mp1i |
⊢ ( 𝑁 ∈ ℕ0 → ( dist ‘ ( ℝ^ ‘ ( 1 ... 𝑁 ) ) ) = ( 𝑓 ∈ 𝑋 , 𝑔 ∈ 𝑋 ↦ ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝑓 ‘ 𝑘 ) − ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) ) ) ) |
17 |
7 16
|
eqtrd |
⊢ ( 𝑁 ∈ ℕ0 → 𝐷 = ( 𝑓 ∈ 𝑋 , 𝑔 ∈ 𝑋 ↦ ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝑓 ‘ 𝑘 ) − ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) ) ) ) |