Step |
Hyp |
Ref |
Expression |
1 |
|
ehleudis.i |
⊢ 𝐼 = ( 1 ... 𝑁 ) |
2 |
|
ehleudis.e |
⊢ 𝐸 = ( 𝔼hil ‘ 𝑁 ) |
3 |
|
ehleudis.x |
⊢ 𝑋 = ( ℝ ↑m 𝐼 ) |
4 |
|
ehleudis.d |
⊢ 𝐷 = ( dist ‘ 𝐸 ) |
5 |
2
|
ehlval |
⊢ ( 𝑁 ∈ ℕ0 → 𝐸 = ( ℝ^ ‘ ( 1 ... 𝑁 ) ) ) |
6 |
5
|
fveq2d |
⊢ ( 𝑁 ∈ ℕ0 → ( dist ‘ 𝐸 ) = ( dist ‘ ( ℝ^ ‘ ( 1 ... 𝑁 ) ) ) ) |
7 |
4 6
|
syl5eq |
⊢ ( 𝑁 ∈ ℕ0 → 𝐷 = ( dist ‘ ( ℝ^ ‘ ( 1 ... 𝑁 ) ) ) ) |
8 |
7
|
oveqd |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝐹 𝐷 𝐺 ) = ( 𝐹 ( dist ‘ ( ℝ^ ‘ ( 1 ... 𝑁 ) ) ) 𝐺 ) ) |
9 |
8
|
3ad2ant1 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) → ( 𝐹 𝐷 𝐺 ) = ( 𝐹 ( dist ‘ ( ℝ^ ‘ ( 1 ... 𝑁 ) ) ) 𝐺 ) ) |
10 |
|
fzfi |
⊢ ( 1 ... 𝑁 ) ∈ Fin |
11 |
1 10
|
eqeltri |
⊢ 𝐼 ∈ Fin |
12 |
3
|
eleq2i |
⊢ ( 𝐹 ∈ 𝑋 ↔ 𝐹 ∈ ( ℝ ↑m 𝐼 ) ) |
13 |
12
|
biimpi |
⊢ ( 𝐹 ∈ 𝑋 → 𝐹 ∈ ( ℝ ↑m 𝐼 ) ) |
14 |
13
|
3ad2ant2 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) → 𝐹 ∈ ( ℝ ↑m 𝐼 ) ) |
15 |
3
|
eleq2i |
⊢ ( 𝐺 ∈ 𝑋 ↔ 𝐺 ∈ ( ℝ ↑m 𝐼 ) ) |
16 |
15
|
biimpi |
⊢ ( 𝐺 ∈ 𝑋 → 𝐺 ∈ ( ℝ ↑m 𝐼 ) ) |
17 |
16
|
3ad2ant3 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) → 𝐺 ∈ ( ℝ ↑m 𝐼 ) ) |
18 |
|
eqid |
⊢ ( ℝ ↑m 𝐼 ) = ( ℝ ↑m 𝐼 ) |
19 |
1
|
eqcomi |
⊢ ( 1 ... 𝑁 ) = 𝐼 |
20 |
19
|
fveq2i |
⊢ ( ℝ^ ‘ ( 1 ... 𝑁 ) ) = ( ℝ^ ‘ 𝐼 ) |
21 |
20
|
fveq2i |
⊢ ( dist ‘ ( ℝ^ ‘ ( 1 ... 𝑁 ) ) ) = ( dist ‘ ( ℝ^ ‘ 𝐼 ) ) |
22 |
18 21
|
rrxdsfival |
⊢ ( ( 𝐼 ∈ Fin ∧ 𝐹 ∈ ( ℝ ↑m 𝐼 ) ∧ 𝐺 ∈ ( ℝ ↑m 𝐼 ) ) → ( 𝐹 ( dist ‘ ( ℝ^ ‘ ( 1 ... 𝑁 ) ) ) 𝐺 ) = ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ) |
23 |
11 14 17 22
|
mp3an2i |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) → ( 𝐹 ( dist ‘ ( ℝ^ ‘ ( 1 ... 𝑁 ) ) ) 𝐺 ) = ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ) |
24 |
9 23
|
eqtrd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋 ) → ( 𝐹 𝐷 𝐺 ) = ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↑ 2 ) ) ) |