Step |
Hyp |
Ref |
Expression |
1 |
|
eigpos.1 |
⊢ 𝐴 ∈ ℋ |
2 |
|
eigpos.2 |
⊢ 𝐵 ∈ ℂ |
3 |
|
oveq2 |
⊢ ( ( 𝑇 ‘ 𝐴 ) = ( 𝐵 ·ℎ 𝐴 ) → ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) = ( 𝐴 ·ih ( 𝐵 ·ℎ 𝐴 ) ) ) |
4 |
3
|
eleq1d |
⊢ ( ( 𝑇 ‘ 𝐴 ) = ( 𝐵 ·ℎ 𝐴 ) → ( ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) ∈ ℝ ↔ ( 𝐴 ·ih ( 𝐵 ·ℎ 𝐴 ) ) ∈ ℝ ) ) |
5 |
2 1
|
hvmulcli |
⊢ ( 𝐵 ·ℎ 𝐴 ) ∈ ℋ |
6 |
|
hire |
⊢ ( ( 𝐴 ∈ ℋ ∧ ( 𝐵 ·ℎ 𝐴 ) ∈ ℋ ) → ( ( 𝐴 ·ih ( 𝐵 ·ℎ 𝐴 ) ) ∈ ℝ ↔ ( 𝐴 ·ih ( 𝐵 ·ℎ 𝐴 ) ) = ( ( 𝐵 ·ℎ 𝐴 ) ·ih 𝐴 ) ) ) |
7 |
1 5 6
|
mp2an |
⊢ ( ( 𝐴 ·ih ( 𝐵 ·ℎ 𝐴 ) ) ∈ ℝ ↔ ( 𝐴 ·ih ( 𝐵 ·ℎ 𝐴 ) ) = ( ( 𝐵 ·ℎ 𝐴 ) ·ih 𝐴 ) ) |
8 |
|
oveq1 |
⊢ ( ( 𝑇 ‘ 𝐴 ) = ( 𝐵 ·ℎ 𝐴 ) → ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐴 ) = ( ( 𝐵 ·ℎ 𝐴 ) ·ih 𝐴 ) ) |
9 |
3 8
|
eqeq12d |
⊢ ( ( 𝑇 ‘ 𝐴 ) = ( 𝐵 ·ℎ 𝐴 ) → ( ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) = ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐴 ) ↔ ( 𝐴 ·ih ( 𝐵 ·ℎ 𝐴 ) ) = ( ( 𝐵 ·ℎ 𝐴 ) ·ih 𝐴 ) ) ) |
10 |
7 9
|
bitr4id |
⊢ ( ( 𝑇 ‘ 𝐴 ) = ( 𝐵 ·ℎ 𝐴 ) → ( ( 𝐴 ·ih ( 𝐵 ·ℎ 𝐴 ) ) ∈ ℝ ↔ ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) = ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐴 ) ) ) |
11 |
4 10
|
bitrd |
⊢ ( ( 𝑇 ‘ 𝐴 ) = ( 𝐵 ·ℎ 𝐴 ) → ( ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) ∈ ℝ ↔ ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) = ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐴 ) ) ) |
12 |
11
|
adantr |
⊢ ( ( ( 𝑇 ‘ 𝐴 ) = ( 𝐵 ·ℎ 𝐴 ) ∧ 𝐴 ≠ 0ℎ ) → ( ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) ∈ ℝ ↔ ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) = ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐴 ) ) ) |
13 |
1 2
|
eigrei |
⊢ ( ( ( 𝑇 ‘ 𝐴 ) = ( 𝐵 ·ℎ 𝐴 ) ∧ 𝐴 ≠ 0ℎ ) → ( ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) = ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐴 ) ↔ 𝐵 ∈ ℝ ) ) |
14 |
12 13
|
bitrd |
⊢ ( ( ( 𝑇 ‘ 𝐴 ) = ( 𝐵 ·ℎ 𝐴 ) ∧ 𝐴 ≠ 0ℎ ) → ( ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) ∈ ℝ ↔ 𝐵 ∈ ℝ ) ) |
15 |
14
|
biimpac |
⊢ ( ( ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) ∈ ℝ ∧ ( ( 𝑇 ‘ 𝐴 ) = ( 𝐵 ·ℎ 𝐴 ) ∧ 𝐴 ≠ 0ℎ ) ) → 𝐵 ∈ ℝ ) |
16 |
15
|
adantlr |
⊢ ( ( ( ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) ∈ ℝ ∧ 0 ≤ ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) ) ∧ ( ( 𝑇 ‘ 𝐴 ) = ( 𝐵 ·ℎ 𝐴 ) ∧ 𝐴 ≠ 0ℎ ) ) → 𝐵 ∈ ℝ ) |
17 |
|
hiidrcl |
⊢ ( 𝐴 ∈ ℋ → ( 𝐴 ·ih 𝐴 ) ∈ ℝ ) |
18 |
1 17
|
mp1i |
⊢ ( ( ( ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) ∈ ℝ ∧ 0 ≤ ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) ) ∧ ( ( 𝑇 ‘ 𝐴 ) = ( 𝐵 ·ℎ 𝐴 ) ∧ 𝐴 ≠ 0ℎ ) ) → ( 𝐴 ·ih 𝐴 ) ∈ ℝ ) |
19 |
|
ax-his4 |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → 0 < ( 𝐴 ·ih 𝐴 ) ) |
20 |
1 19
|
mpan |
⊢ ( 𝐴 ≠ 0ℎ → 0 < ( 𝐴 ·ih 𝐴 ) ) |
21 |
20
|
ad2antll |
⊢ ( ( ( ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) ∈ ℝ ∧ 0 ≤ ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) ) ∧ ( ( 𝑇 ‘ 𝐴 ) = ( 𝐵 ·ℎ 𝐴 ) ∧ 𝐴 ≠ 0ℎ ) ) → 0 < ( 𝐴 ·ih 𝐴 ) ) |
22 |
18 21
|
elrpd |
⊢ ( ( ( ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) ∈ ℝ ∧ 0 ≤ ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) ) ∧ ( ( 𝑇 ‘ 𝐴 ) = ( 𝐵 ·ℎ 𝐴 ) ∧ 𝐴 ≠ 0ℎ ) ) → ( 𝐴 ·ih 𝐴 ) ∈ ℝ+ ) |
23 |
|
simplr |
⊢ ( ( ( ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) ∈ ℝ ∧ 0 ≤ ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) ) ∧ ( ( 𝑇 ‘ 𝐴 ) = ( 𝐵 ·ℎ 𝐴 ) ∧ 𝐴 ≠ 0ℎ ) ) → 0 ≤ ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) ) |
24 |
3
|
ad2antrl |
⊢ ( ( ( ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) ∈ ℝ ∧ 0 ≤ ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) ) ∧ ( ( 𝑇 ‘ 𝐴 ) = ( 𝐵 ·ℎ 𝐴 ) ∧ 𝐴 ≠ 0ℎ ) ) → ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) = ( 𝐴 ·ih ( 𝐵 ·ℎ 𝐴 ) ) ) |
25 |
|
his5 |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( 𝐴 ·ih ( 𝐵 ·ℎ 𝐴 ) ) = ( ( ∗ ‘ 𝐵 ) · ( 𝐴 ·ih 𝐴 ) ) ) |
26 |
2 1 1 25
|
mp3an |
⊢ ( 𝐴 ·ih ( 𝐵 ·ℎ 𝐴 ) ) = ( ( ∗ ‘ 𝐵 ) · ( 𝐴 ·ih 𝐴 ) ) |
27 |
16
|
cjred |
⊢ ( ( ( ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) ∈ ℝ ∧ 0 ≤ ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) ) ∧ ( ( 𝑇 ‘ 𝐴 ) = ( 𝐵 ·ℎ 𝐴 ) ∧ 𝐴 ≠ 0ℎ ) ) → ( ∗ ‘ 𝐵 ) = 𝐵 ) |
28 |
27
|
oveq1d |
⊢ ( ( ( ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) ∈ ℝ ∧ 0 ≤ ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) ) ∧ ( ( 𝑇 ‘ 𝐴 ) = ( 𝐵 ·ℎ 𝐴 ) ∧ 𝐴 ≠ 0ℎ ) ) → ( ( ∗ ‘ 𝐵 ) · ( 𝐴 ·ih 𝐴 ) ) = ( 𝐵 · ( 𝐴 ·ih 𝐴 ) ) ) |
29 |
26 28
|
syl5eq |
⊢ ( ( ( ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) ∈ ℝ ∧ 0 ≤ ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) ) ∧ ( ( 𝑇 ‘ 𝐴 ) = ( 𝐵 ·ℎ 𝐴 ) ∧ 𝐴 ≠ 0ℎ ) ) → ( 𝐴 ·ih ( 𝐵 ·ℎ 𝐴 ) ) = ( 𝐵 · ( 𝐴 ·ih 𝐴 ) ) ) |
30 |
24 29
|
eqtrd |
⊢ ( ( ( ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) ∈ ℝ ∧ 0 ≤ ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) ) ∧ ( ( 𝑇 ‘ 𝐴 ) = ( 𝐵 ·ℎ 𝐴 ) ∧ 𝐴 ≠ 0ℎ ) ) → ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) = ( 𝐵 · ( 𝐴 ·ih 𝐴 ) ) ) |
31 |
23 30
|
breqtrd |
⊢ ( ( ( ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) ∈ ℝ ∧ 0 ≤ ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) ) ∧ ( ( 𝑇 ‘ 𝐴 ) = ( 𝐵 ·ℎ 𝐴 ) ∧ 𝐴 ≠ 0ℎ ) ) → 0 ≤ ( 𝐵 · ( 𝐴 ·ih 𝐴 ) ) ) |
32 |
16 22 31
|
prodge0ld |
⊢ ( ( ( ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) ∈ ℝ ∧ 0 ≤ ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) ) ∧ ( ( 𝑇 ‘ 𝐴 ) = ( 𝐵 ·ℎ 𝐴 ) ∧ 𝐴 ≠ 0ℎ ) ) → 0 ≤ 𝐵 ) |
33 |
16 32
|
jca |
⊢ ( ( ( ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) ∈ ℝ ∧ 0 ≤ ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) ) ∧ ( ( 𝑇 ‘ 𝐴 ) = ( 𝐵 ·ℎ 𝐴 ) ∧ 𝐴 ≠ 0ℎ ) ) → ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) |