Step |
Hyp |
Ref |
Expression |
1 |
|
eigre.1 |
⊢ 𝐴 ∈ ℋ |
2 |
|
eigre.2 |
⊢ 𝐵 ∈ ℂ |
3 |
|
oveq2 |
⊢ ( ( 𝑇 ‘ 𝐴 ) = ( 𝐵 ·ℎ 𝐴 ) → ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) = ( 𝐴 ·ih ( 𝐵 ·ℎ 𝐴 ) ) ) |
4 |
|
his5 |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( 𝐴 ·ih ( 𝐵 ·ℎ 𝐴 ) ) = ( ( ∗ ‘ 𝐵 ) · ( 𝐴 ·ih 𝐴 ) ) ) |
5 |
2 1 1 4
|
mp3an |
⊢ ( 𝐴 ·ih ( 𝐵 ·ℎ 𝐴 ) ) = ( ( ∗ ‘ 𝐵 ) · ( 𝐴 ·ih 𝐴 ) ) |
6 |
3 5
|
eqtrdi |
⊢ ( ( 𝑇 ‘ 𝐴 ) = ( 𝐵 ·ℎ 𝐴 ) → ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) = ( ( ∗ ‘ 𝐵 ) · ( 𝐴 ·ih 𝐴 ) ) ) |
7 |
|
oveq1 |
⊢ ( ( 𝑇 ‘ 𝐴 ) = ( 𝐵 ·ℎ 𝐴 ) → ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐴 ) = ( ( 𝐵 ·ℎ 𝐴 ) ·ih 𝐴 ) ) |
8 |
|
ax-his3 |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( ( 𝐵 ·ℎ 𝐴 ) ·ih 𝐴 ) = ( 𝐵 · ( 𝐴 ·ih 𝐴 ) ) ) |
9 |
2 1 1 8
|
mp3an |
⊢ ( ( 𝐵 ·ℎ 𝐴 ) ·ih 𝐴 ) = ( 𝐵 · ( 𝐴 ·ih 𝐴 ) ) |
10 |
7 9
|
eqtrdi |
⊢ ( ( 𝑇 ‘ 𝐴 ) = ( 𝐵 ·ℎ 𝐴 ) → ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐴 ) = ( 𝐵 · ( 𝐴 ·ih 𝐴 ) ) ) |
11 |
6 10
|
eqeq12d |
⊢ ( ( 𝑇 ‘ 𝐴 ) = ( 𝐵 ·ℎ 𝐴 ) → ( ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) = ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐴 ) ↔ ( ( ∗ ‘ 𝐵 ) · ( 𝐴 ·ih 𝐴 ) ) = ( 𝐵 · ( 𝐴 ·ih 𝐴 ) ) ) ) |
12 |
1 1
|
hicli |
⊢ ( 𝐴 ·ih 𝐴 ) ∈ ℂ |
13 |
|
ax-his4 |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → 0 < ( 𝐴 ·ih 𝐴 ) ) |
14 |
1 13
|
mpan |
⊢ ( 𝐴 ≠ 0ℎ → 0 < ( 𝐴 ·ih 𝐴 ) ) |
15 |
14
|
gt0ne0d |
⊢ ( 𝐴 ≠ 0ℎ → ( 𝐴 ·ih 𝐴 ) ≠ 0 ) |
16 |
2
|
cjcli |
⊢ ( ∗ ‘ 𝐵 ) ∈ ℂ |
17 |
|
mulcan2 |
⊢ ( ( ( ∗ ‘ 𝐵 ) ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( ( 𝐴 ·ih 𝐴 ) ∈ ℂ ∧ ( 𝐴 ·ih 𝐴 ) ≠ 0 ) ) → ( ( ( ∗ ‘ 𝐵 ) · ( 𝐴 ·ih 𝐴 ) ) = ( 𝐵 · ( 𝐴 ·ih 𝐴 ) ) ↔ ( ∗ ‘ 𝐵 ) = 𝐵 ) ) |
18 |
16 2 17
|
mp3an12 |
⊢ ( ( ( 𝐴 ·ih 𝐴 ) ∈ ℂ ∧ ( 𝐴 ·ih 𝐴 ) ≠ 0 ) → ( ( ( ∗ ‘ 𝐵 ) · ( 𝐴 ·ih 𝐴 ) ) = ( 𝐵 · ( 𝐴 ·ih 𝐴 ) ) ↔ ( ∗ ‘ 𝐵 ) = 𝐵 ) ) |
19 |
12 15 18
|
sylancr |
⊢ ( 𝐴 ≠ 0ℎ → ( ( ( ∗ ‘ 𝐵 ) · ( 𝐴 ·ih 𝐴 ) ) = ( 𝐵 · ( 𝐴 ·ih 𝐴 ) ) ↔ ( ∗ ‘ 𝐵 ) = 𝐵 ) ) |
20 |
11 19
|
sylan9bb |
⊢ ( ( ( 𝑇 ‘ 𝐴 ) = ( 𝐵 ·ℎ 𝐴 ) ∧ 𝐴 ≠ 0ℎ ) → ( ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) = ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐴 ) ↔ ( ∗ ‘ 𝐵 ) = 𝐵 ) ) |
21 |
2
|
cjrebi |
⊢ ( 𝐵 ∈ ℝ ↔ ( ∗ ‘ 𝐵 ) = 𝐵 ) |
22 |
20 21
|
bitr4di |
⊢ ( ( ( 𝑇 ‘ 𝐴 ) = ( 𝐵 ·ℎ 𝐴 ) ∧ 𝐴 ≠ 0ℎ ) → ( ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) = ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐴 ) ↔ 𝐵 ∈ ℝ ) ) |