| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eigvalval | ⊢ ( ( 𝑇 :  ℋ ⟶  ℋ  ∧  𝐴  ∈  ( eigvec ‘ 𝑇 ) )  →  ( ( eigval ‘ 𝑇 ) ‘ 𝐴 )  =  ( ( ( 𝑇 ‘ 𝐴 )  ·ih  𝐴 )  /  ( ( normℎ ‘ 𝐴 ) ↑ 2 ) ) ) | 
						
							| 2 |  | eleigveccl | ⊢ ( ( 𝑇 :  ℋ ⟶  ℋ  ∧  𝐴  ∈  ( eigvec ‘ 𝑇 ) )  →  𝐴  ∈   ℋ ) | 
						
							| 3 |  | ffvelcdm | ⊢ ( ( 𝑇 :  ℋ ⟶  ℋ  ∧  𝐴  ∈   ℋ )  →  ( 𝑇 ‘ 𝐴 )  ∈   ℋ ) | 
						
							| 4 |  | hicl | ⊢ ( ( ( 𝑇 ‘ 𝐴 )  ∈   ℋ  ∧  𝐴  ∈   ℋ )  →  ( ( 𝑇 ‘ 𝐴 )  ·ih  𝐴 )  ∈  ℂ ) | 
						
							| 5 | 3 4 | sylancom | ⊢ ( ( 𝑇 :  ℋ ⟶  ℋ  ∧  𝐴  ∈   ℋ )  →  ( ( 𝑇 ‘ 𝐴 )  ·ih  𝐴 )  ∈  ℂ ) | 
						
							| 6 | 2 5 | syldan | ⊢ ( ( 𝑇 :  ℋ ⟶  ℋ  ∧  𝐴  ∈  ( eigvec ‘ 𝑇 ) )  →  ( ( 𝑇 ‘ 𝐴 )  ·ih  𝐴 )  ∈  ℂ ) | 
						
							| 7 |  | normcl | ⊢ ( 𝐴  ∈   ℋ  →  ( normℎ ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 8 | 7 | recnd | ⊢ ( 𝐴  ∈   ℋ  →  ( normℎ ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 9 | 2 8 | syl | ⊢ ( ( 𝑇 :  ℋ ⟶  ℋ  ∧  𝐴  ∈  ( eigvec ‘ 𝑇 ) )  →  ( normℎ ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 10 | 9 | sqcld | ⊢ ( ( 𝑇 :  ℋ ⟶  ℋ  ∧  𝐴  ∈  ( eigvec ‘ 𝑇 ) )  →  ( ( normℎ ‘ 𝐴 ) ↑ 2 )  ∈  ℂ ) | 
						
							| 11 |  | eleigvec | ⊢ ( 𝑇 :  ℋ ⟶  ℋ  →  ( 𝐴  ∈  ( eigvec ‘ 𝑇 )  ↔  ( 𝐴  ∈   ℋ  ∧  𝐴  ≠  0ℎ  ∧  ∃ 𝑥  ∈  ℂ ( 𝑇 ‘ 𝐴 )  =  ( 𝑥  ·ℎ  𝐴 ) ) ) ) | 
						
							| 12 | 11 | biimpa | ⊢ ( ( 𝑇 :  ℋ ⟶  ℋ  ∧  𝐴  ∈  ( eigvec ‘ 𝑇 ) )  →  ( 𝐴  ∈   ℋ  ∧  𝐴  ≠  0ℎ  ∧  ∃ 𝑥  ∈  ℂ ( 𝑇 ‘ 𝐴 )  =  ( 𝑥  ·ℎ  𝐴 ) ) ) | 
						
							| 13 |  | sqne0 | ⊢ ( ( normℎ ‘ 𝐴 )  ∈  ℂ  →  ( ( ( normℎ ‘ 𝐴 ) ↑ 2 )  ≠  0  ↔  ( normℎ ‘ 𝐴 )  ≠  0 ) ) | 
						
							| 14 | 8 13 | syl | ⊢ ( 𝐴  ∈   ℋ  →  ( ( ( normℎ ‘ 𝐴 ) ↑ 2 )  ≠  0  ↔  ( normℎ ‘ 𝐴 )  ≠  0 ) ) | 
						
							| 15 |  | normne0 | ⊢ ( 𝐴  ∈   ℋ  →  ( ( normℎ ‘ 𝐴 )  ≠  0  ↔  𝐴  ≠  0ℎ ) ) | 
						
							| 16 | 14 15 | bitr2d | ⊢ ( 𝐴  ∈   ℋ  →  ( 𝐴  ≠  0ℎ  ↔  ( ( normℎ ‘ 𝐴 ) ↑ 2 )  ≠  0 ) ) | 
						
							| 17 | 16 | biimpa | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐴  ≠  0ℎ )  →  ( ( normℎ ‘ 𝐴 ) ↑ 2 )  ≠  0 ) | 
						
							| 18 | 17 | 3adant3 | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐴  ≠  0ℎ  ∧  ∃ 𝑥  ∈  ℂ ( 𝑇 ‘ 𝐴 )  =  ( 𝑥  ·ℎ  𝐴 ) )  →  ( ( normℎ ‘ 𝐴 ) ↑ 2 )  ≠  0 ) | 
						
							| 19 | 12 18 | syl | ⊢ ( ( 𝑇 :  ℋ ⟶  ℋ  ∧  𝐴  ∈  ( eigvec ‘ 𝑇 ) )  →  ( ( normℎ ‘ 𝐴 ) ↑ 2 )  ≠  0 ) | 
						
							| 20 | 6 10 19 | divcld | ⊢ ( ( 𝑇 :  ℋ ⟶  ℋ  ∧  𝐴  ∈  ( eigvec ‘ 𝑇 ) )  →  ( ( ( 𝑇 ‘ 𝐴 )  ·ih  𝐴 )  /  ( ( normℎ ‘ 𝐴 ) ↑ 2 ) )  ∈  ℂ ) | 
						
							| 21 | 1 20 | eqeltrd | ⊢ ( ( 𝑇 :  ℋ ⟶  ℋ  ∧  𝐴  ∈  ( eigvec ‘ 𝑇 ) )  →  ( ( eigval ‘ 𝑇 ) ‘ 𝐴 )  ∈  ℂ ) |