| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fvex | ⊢ ( eigvec ‘ 𝑇 )  ∈  V | 
						
							| 2 | 1 | mptex | ⊢ ( 𝑥  ∈  ( eigvec ‘ 𝑇 )  ↦  ( ( ( 𝑇 ‘ 𝑥 )  ·ih  𝑥 )  /  ( ( normℎ ‘ 𝑥 ) ↑ 2 ) ) )  ∈  V | 
						
							| 3 |  | ax-hilex | ⊢  ℋ  ∈  V | 
						
							| 4 |  | fveq2 | ⊢ ( 𝑡  =  𝑇  →  ( eigvec ‘ 𝑡 )  =  ( eigvec ‘ 𝑇 ) ) | 
						
							| 5 |  | fveq1 | ⊢ ( 𝑡  =  𝑇  →  ( 𝑡 ‘ 𝑥 )  =  ( 𝑇 ‘ 𝑥 ) ) | 
						
							| 6 | 5 | oveq1d | ⊢ ( 𝑡  =  𝑇  →  ( ( 𝑡 ‘ 𝑥 )  ·ih  𝑥 )  =  ( ( 𝑇 ‘ 𝑥 )  ·ih  𝑥 ) ) | 
						
							| 7 | 6 | oveq1d | ⊢ ( 𝑡  =  𝑇  →  ( ( ( 𝑡 ‘ 𝑥 )  ·ih  𝑥 )  /  ( ( normℎ ‘ 𝑥 ) ↑ 2 ) )  =  ( ( ( 𝑇 ‘ 𝑥 )  ·ih  𝑥 )  /  ( ( normℎ ‘ 𝑥 ) ↑ 2 ) ) ) | 
						
							| 8 | 4 7 | mpteq12dv | ⊢ ( 𝑡  =  𝑇  →  ( 𝑥  ∈  ( eigvec ‘ 𝑡 )  ↦  ( ( ( 𝑡 ‘ 𝑥 )  ·ih  𝑥 )  /  ( ( normℎ ‘ 𝑥 ) ↑ 2 ) ) )  =  ( 𝑥  ∈  ( eigvec ‘ 𝑇 )  ↦  ( ( ( 𝑇 ‘ 𝑥 )  ·ih  𝑥 )  /  ( ( normℎ ‘ 𝑥 ) ↑ 2 ) ) ) ) | 
						
							| 9 |  | df-eigval | ⊢ eigval  =  ( 𝑡  ∈  (  ℋ  ↑m   ℋ )  ↦  ( 𝑥  ∈  ( eigvec ‘ 𝑡 )  ↦  ( ( ( 𝑡 ‘ 𝑥 )  ·ih  𝑥 )  /  ( ( normℎ ‘ 𝑥 ) ↑ 2 ) ) ) ) | 
						
							| 10 | 2 3 3 8 9 | fvmptmap | ⊢ ( 𝑇 :  ℋ ⟶  ℋ  →  ( eigval ‘ 𝑇 )  =  ( 𝑥  ∈  ( eigvec ‘ 𝑇 )  ↦  ( ( ( 𝑇 ‘ 𝑥 )  ·ih  𝑥 )  /  ( ( normℎ ‘ 𝑥 ) ↑ 2 ) ) ) ) |