| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eigvalfval | ⊢ ( 𝑇 :  ℋ ⟶  ℋ  →  ( eigval ‘ 𝑇 )  =  ( 𝑥  ∈  ( eigvec ‘ 𝑇 )  ↦  ( ( ( 𝑇 ‘ 𝑥 )  ·ih  𝑥 )  /  ( ( normℎ ‘ 𝑥 ) ↑ 2 ) ) ) ) | 
						
							| 2 | 1 | fveq1d | ⊢ ( 𝑇 :  ℋ ⟶  ℋ  →  ( ( eigval ‘ 𝑇 ) ‘ 𝐴 )  =  ( ( 𝑥  ∈  ( eigvec ‘ 𝑇 )  ↦  ( ( ( 𝑇 ‘ 𝑥 )  ·ih  𝑥 )  /  ( ( normℎ ‘ 𝑥 ) ↑ 2 ) ) ) ‘ 𝐴 ) ) | 
						
							| 3 |  | fveq2 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑇 ‘ 𝑥 )  =  ( 𝑇 ‘ 𝐴 ) ) | 
						
							| 4 |  | id | ⊢ ( 𝑥  =  𝐴  →  𝑥  =  𝐴 ) | 
						
							| 5 | 3 4 | oveq12d | ⊢ ( 𝑥  =  𝐴  →  ( ( 𝑇 ‘ 𝑥 )  ·ih  𝑥 )  =  ( ( 𝑇 ‘ 𝐴 )  ·ih  𝐴 ) ) | 
						
							| 6 |  | fveq2 | ⊢ ( 𝑥  =  𝐴  →  ( normℎ ‘ 𝑥 )  =  ( normℎ ‘ 𝐴 ) ) | 
						
							| 7 | 6 | oveq1d | ⊢ ( 𝑥  =  𝐴  →  ( ( normℎ ‘ 𝑥 ) ↑ 2 )  =  ( ( normℎ ‘ 𝐴 ) ↑ 2 ) ) | 
						
							| 8 | 5 7 | oveq12d | ⊢ ( 𝑥  =  𝐴  →  ( ( ( 𝑇 ‘ 𝑥 )  ·ih  𝑥 )  /  ( ( normℎ ‘ 𝑥 ) ↑ 2 ) )  =  ( ( ( 𝑇 ‘ 𝐴 )  ·ih  𝐴 )  /  ( ( normℎ ‘ 𝐴 ) ↑ 2 ) ) ) | 
						
							| 9 |  | eqid | ⊢ ( 𝑥  ∈  ( eigvec ‘ 𝑇 )  ↦  ( ( ( 𝑇 ‘ 𝑥 )  ·ih  𝑥 )  /  ( ( normℎ ‘ 𝑥 ) ↑ 2 ) ) )  =  ( 𝑥  ∈  ( eigvec ‘ 𝑇 )  ↦  ( ( ( 𝑇 ‘ 𝑥 )  ·ih  𝑥 )  /  ( ( normℎ ‘ 𝑥 ) ↑ 2 ) ) ) | 
						
							| 10 |  | ovex | ⊢ ( ( ( 𝑇 ‘ 𝐴 )  ·ih  𝐴 )  /  ( ( normℎ ‘ 𝐴 ) ↑ 2 ) )  ∈  V | 
						
							| 11 | 8 9 10 | fvmpt | ⊢ ( 𝐴  ∈  ( eigvec ‘ 𝑇 )  →  ( ( 𝑥  ∈  ( eigvec ‘ 𝑇 )  ↦  ( ( ( 𝑇 ‘ 𝑥 )  ·ih  𝑥 )  /  ( ( normℎ ‘ 𝑥 ) ↑ 2 ) ) ) ‘ 𝐴 )  =  ( ( ( 𝑇 ‘ 𝐴 )  ·ih  𝐴 )  /  ( ( normℎ ‘ 𝐴 ) ↑ 2 ) ) ) | 
						
							| 12 | 2 11 | sylan9eq | ⊢ ( ( 𝑇 :  ℋ ⟶  ℋ  ∧  𝐴  ∈  ( eigvec ‘ 𝑇 ) )  →  ( ( eigval ‘ 𝑇 ) ‘ 𝐴 )  =  ( ( ( 𝑇 ‘ 𝐴 )  ·ih  𝐴 )  /  ( ( normℎ ‘ 𝐴 ) ↑ 2 ) ) ) |