Step |
Hyp |
Ref |
Expression |
1 |
|
eigvalfval |
⊢ ( 𝑇 : ℋ ⟶ ℋ → ( eigval ‘ 𝑇 ) = ( 𝑥 ∈ ( eigvec ‘ 𝑇 ) ↦ ( ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) / ( ( normℎ ‘ 𝑥 ) ↑ 2 ) ) ) ) |
2 |
1
|
fveq1d |
⊢ ( 𝑇 : ℋ ⟶ ℋ → ( ( eigval ‘ 𝑇 ) ‘ 𝐴 ) = ( ( 𝑥 ∈ ( eigvec ‘ 𝑇 ) ↦ ( ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) / ( ( normℎ ‘ 𝑥 ) ↑ 2 ) ) ) ‘ 𝐴 ) ) |
3 |
|
fveq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝑇 ‘ 𝑥 ) = ( 𝑇 ‘ 𝐴 ) ) |
4 |
|
id |
⊢ ( 𝑥 = 𝐴 → 𝑥 = 𝐴 ) |
5 |
3 4
|
oveq12d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) = ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐴 ) ) |
6 |
|
fveq2 |
⊢ ( 𝑥 = 𝐴 → ( normℎ ‘ 𝑥 ) = ( normℎ ‘ 𝐴 ) ) |
7 |
6
|
oveq1d |
⊢ ( 𝑥 = 𝐴 → ( ( normℎ ‘ 𝑥 ) ↑ 2 ) = ( ( normℎ ‘ 𝐴 ) ↑ 2 ) ) |
8 |
5 7
|
oveq12d |
⊢ ( 𝑥 = 𝐴 → ( ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) / ( ( normℎ ‘ 𝑥 ) ↑ 2 ) ) = ( ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐴 ) / ( ( normℎ ‘ 𝐴 ) ↑ 2 ) ) ) |
9 |
|
eqid |
⊢ ( 𝑥 ∈ ( eigvec ‘ 𝑇 ) ↦ ( ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) / ( ( normℎ ‘ 𝑥 ) ↑ 2 ) ) ) = ( 𝑥 ∈ ( eigvec ‘ 𝑇 ) ↦ ( ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) / ( ( normℎ ‘ 𝑥 ) ↑ 2 ) ) ) |
10 |
|
ovex |
⊢ ( ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐴 ) / ( ( normℎ ‘ 𝐴 ) ↑ 2 ) ) ∈ V |
11 |
8 9 10
|
fvmpt |
⊢ ( 𝐴 ∈ ( eigvec ‘ 𝑇 ) → ( ( 𝑥 ∈ ( eigvec ‘ 𝑇 ) ↦ ( ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) / ( ( normℎ ‘ 𝑥 ) ↑ 2 ) ) ) ‘ 𝐴 ) = ( ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐴 ) / ( ( normℎ ‘ 𝐴 ) ↑ 2 ) ) ) |
12 |
2 11
|
sylan9eq |
⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝐴 ∈ ( eigvec ‘ 𝑇 ) ) → ( ( eigval ‘ 𝑇 ) ‘ 𝐴 ) = ( ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐴 ) / ( ( normℎ ‘ 𝐴 ) ↑ 2 ) ) ) |