Metamath Proof Explorer


Theorem eigvecval

Description: The set of eigenvectors of a Hilbert space operator. (Contributed by NM, 11-Mar-2006) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)

Ref Expression
Assertion eigvecval ( 𝑇 : ℋ ⟶ ℋ → ( eigvec ‘ 𝑇 ) = { 𝑥 ∈ ( ℋ ∖ 0 ) ∣ ∃ 𝑦 ∈ ℂ ( 𝑇𝑥 ) = ( 𝑦 · 𝑥 ) } )

Proof

Step Hyp Ref Expression
1 ax-hilex ℋ ∈ V
2 difexg ( ℋ ∈ V → ( ℋ ∖ 0 ) ∈ V )
3 1 2 ax-mp ( ℋ ∖ 0 ) ∈ V
4 3 rabex { 𝑥 ∈ ( ℋ ∖ 0 ) ∣ ∃ 𝑦 ∈ ℂ ( 𝑇𝑥 ) = ( 𝑦 · 𝑥 ) } ∈ V
5 fveq1 ( 𝑡 = 𝑇 → ( 𝑡𝑥 ) = ( 𝑇𝑥 ) )
6 5 eqeq1d ( 𝑡 = 𝑇 → ( ( 𝑡𝑥 ) = ( 𝑦 · 𝑥 ) ↔ ( 𝑇𝑥 ) = ( 𝑦 · 𝑥 ) ) )
7 6 rexbidv ( 𝑡 = 𝑇 → ( ∃ 𝑦 ∈ ℂ ( 𝑡𝑥 ) = ( 𝑦 · 𝑥 ) ↔ ∃ 𝑦 ∈ ℂ ( 𝑇𝑥 ) = ( 𝑦 · 𝑥 ) ) )
8 7 rabbidv ( 𝑡 = 𝑇 → { 𝑥 ∈ ( ℋ ∖ 0 ) ∣ ∃ 𝑦 ∈ ℂ ( 𝑡𝑥 ) = ( 𝑦 · 𝑥 ) } = { 𝑥 ∈ ( ℋ ∖ 0 ) ∣ ∃ 𝑦 ∈ ℂ ( 𝑇𝑥 ) = ( 𝑦 · 𝑥 ) } )
9 df-eigvec eigvec = ( 𝑡 ∈ ( ℋ ↑m ℋ ) ↦ { 𝑥 ∈ ( ℋ ∖ 0 ) ∣ ∃ 𝑦 ∈ ℂ ( 𝑡𝑥 ) = ( 𝑦 · 𝑥 ) } )
10 4 1 1 8 9 fvmptmap ( 𝑇 : ℋ ⟶ ℋ → ( eigvec ‘ 𝑇 ) = { 𝑥 ∈ ( ℋ ∖ 0 ) ∣ ∃ 𝑦 ∈ ℂ ( 𝑇𝑥 ) = ( 𝑦 · 𝑥 ) } )