Step |
Hyp |
Ref |
Expression |
1 |
|
eirr.1 |
⊢ 𝐹 = ( 𝑛 ∈ ℕ0 ↦ ( 1 / ( ! ‘ 𝑛 ) ) ) |
2 |
|
eirr.2 |
⊢ ( 𝜑 → 𝑃 ∈ ℤ ) |
3 |
|
eirr.3 |
⊢ ( 𝜑 → 𝑄 ∈ ℕ ) |
4 |
|
eirr.4 |
⊢ ( 𝜑 → e = ( 𝑃 / 𝑄 ) ) |
5 |
|
fzfid |
⊢ ( 𝜑 → ( 0 ... 𝑄 ) ∈ Fin ) |
6 |
|
elfznn0 |
⊢ ( 𝑘 ∈ ( 0 ... 𝑄 ) → 𝑘 ∈ ℕ0 ) |
7 |
|
nn0z |
⊢ ( 𝑛 ∈ ℕ0 → 𝑛 ∈ ℤ ) |
8 |
|
1exp |
⊢ ( 𝑛 ∈ ℤ → ( 1 ↑ 𝑛 ) = 1 ) |
9 |
7 8
|
syl |
⊢ ( 𝑛 ∈ ℕ0 → ( 1 ↑ 𝑛 ) = 1 ) |
10 |
9
|
oveq1d |
⊢ ( 𝑛 ∈ ℕ0 → ( ( 1 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) = ( 1 / ( ! ‘ 𝑛 ) ) ) |
11 |
10
|
mpteq2ia |
⊢ ( 𝑛 ∈ ℕ0 ↦ ( ( 1 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( 1 / ( ! ‘ 𝑛 ) ) ) |
12 |
1 11
|
eqtr4i |
⊢ 𝐹 = ( 𝑛 ∈ ℕ0 ↦ ( ( 1 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) |
13 |
12
|
eftval |
⊢ ( 𝑘 ∈ ℕ0 → ( 𝐹 ‘ 𝑘 ) = ( ( 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
14 |
13
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑘 ) = ( ( 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
15 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
16 |
15
|
a1i |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
17 |
|
eftcl |
⊢ ( ( 1 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ( 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ∈ ℂ ) |
18 |
16 17
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ∈ ℂ ) |
19 |
14 18
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
20 |
6 19
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑄 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
21 |
5 20
|
fsumcl |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 0 ... 𝑄 ) ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
22 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
23 |
|
eqid |
⊢ ( ℤ≥ ‘ ( 𝑄 + 1 ) ) = ( ℤ≥ ‘ ( 𝑄 + 1 ) ) |
24 |
3
|
peano2nnd |
⊢ ( 𝜑 → ( 𝑄 + 1 ) ∈ ℕ ) |
25 |
24
|
nnnn0d |
⊢ ( 𝜑 → ( 𝑄 + 1 ) ∈ ℕ0 ) |
26 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) |
27 |
|
fveq2 |
⊢ ( 𝑛 = 𝑘 → ( ! ‘ 𝑛 ) = ( ! ‘ 𝑘 ) ) |
28 |
27
|
oveq2d |
⊢ ( 𝑛 = 𝑘 → ( 1 / ( ! ‘ 𝑛 ) ) = ( 1 / ( ! ‘ 𝑘 ) ) ) |
29 |
|
ovex |
⊢ ( 1 / ( ! ‘ 𝑘 ) ) ∈ V |
30 |
28 1 29
|
fvmpt |
⊢ ( 𝑘 ∈ ℕ0 → ( 𝐹 ‘ 𝑘 ) = ( 1 / ( ! ‘ 𝑘 ) ) ) |
31 |
30
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑘 ) = ( 1 / ( ! ‘ 𝑘 ) ) ) |
32 |
|
faccl |
⊢ ( 𝑘 ∈ ℕ0 → ( ! ‘ 𝑘 ) ∈ ℕ ) |
33 |
32
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ! ‘ 𝑘 ) ∈ ℕ ) |
34 |
33
|
nnrpd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ! ‘ 𝑘 ) ∈ ℝ+ ) |
35 |
34
|
rpreccld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 1 / ( ! ‘ 𝑘 ) ) ∈ ℝ+ ) |
36 |
31 35
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ+ ) |
37 |
12
|
efcllem |
⊢ ( 1 ∈ ℂ → seq 0 ( + , 𝐹 ) ∈ dom ⇝ ) |
38 |
16 37
|
syl |
⊢ ( 𝜑 → seq 0 ( + , 𝐹 ) ∈ dom ⇝ ) |
39 |
22 23 25 26 36 38
|
isumrpcl |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑄 + 1 ) ) ( 𝐹 ‘ 𝑘 ) ∈ ℝ+ ) |
40 |
39
|
rpred |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑄 + 1 ) ) ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
41 |
40
|
recnd |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑄 + 1 ) ) ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
42 |
|
esum |
⊢ e = Σ 𝑘 ∈ ℕ0 ( 1 / ( ! ‘ 𝑘 ) ) |
43 |
30
|
sumeq2i |
⊢ Σ 𝑘 ∈ ℕ0 ( 𝐹 ‘ 𝑘 ) = Σ 𝑘 ∈ ℕ0 ( 1 / ( ! ‘ 𝑘 ) ) |
44 |
42 43
|
eqtr4i |
⊢ e = Σ 𝑘 ∈ ℕ0 ( 𝐹 ‘ 𝑘 ) |
45 |
22 23 25 26 19 38
|
isumsplit |
⊢ ( 𝜑 → Σ 𝑘 ∈ ℕ0 ( 𝐹 ‘ 𝑘 ) = ( Σ 𝑘 ∈ ( 0 ... ( ( 𝑄 + 1 ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑄 + 1 ) ) ( 𝐹 ‘ 𝑘 ) ) ) |
46 |
44 45
|
eqtrid |
⊢ ( 𝜑 → e = ( Σ 𝑘 ∈ ( 0 ... ( ( 𝑄 + 1 ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑄 + 1 ) ) ( 𝐹 ‘ 𝑘 ) ) ) |
47 |
3
|
nncnd |
⊢ ( 𝜑 → 𝑄 ∈ ℂ ) |
48 |
|
pncan |
⊢ ( ( 𝑄 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑄 + 1 ) − 1 ) = 𝑄 ) |
49 |
47 15 48
|
sylancl |
⊢ ( 𝜑 → ( ( 𝑄 + 1 ) − 1 ) = 𝑄 ) |
50 |
49
|
oveq2d |
⊢ ( 𝜑 → ( 0 ... ( ( 𝑄 + 1 ) − 1 ) ) = ( 0 ... 𝑄 ) ) |
51 |
50
|
sumeq1d |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 0 ... ( ( 𝑄 + 1 ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) = Σ 𝑘 ∈ ( 0 ... 𝑄 ) ( 𝐹 ‘ 𝑘 ) ) |
52 |
51
|
oveq1d |
⊢ ( 𝜑 → ( Σ 𝑘 ∈ ( 0 ... ( ( 𝑄 + 1 ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑄 + 1 ) ) ( 𝐹 ‘ 𝑘 ) ) = ( Σ 𝑘 ∈ ( 0 ... 𝑄 ) ( 𝐹 ‘ 𝑘 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑄 + 1 ) ) ( 𝐹 ‘ 𝑘 ) ) ) |
53 |
46 52
|
eqtrd |
⊢ ( 𝜑 → e = ( Σ 𝑘 ∈ ( 0 ... 𝑄 ) ( 𝐹 ‘ 𝑘 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑄 + 1 ) ) ( 𝐹 ‘ 𝑘 ) ) ) |
54 |
21 41 53
|
mvrladdd |
⊢ ( 𝜑 → ( e − Σ 𝑘 ∈ ( 0 ... 𝑄 ) ( 𝐹 ‘ 𝑘 ) ) = Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑄 + 1 ) ) ( 𝐹 ‘ 𝑘 ) ) |
55 |
54
|
oveq2d |
⊢ ( 𝜑 → ( ( ! ‘ 𝑄 ) · ( e − Σ 𝑘 ∈ ( 0 ... 𝑄 ) ( 𝐹 ‘ 𝑘 ) ) ) = ( ( ! ‘ 𝑄 ) · Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑄 + 1 ) ) ( 𝐹 ‘ 𝑘 ) ) ) |
56 |
3
|
nnnn0d |
⊢ ( 𝜑 → 𝑄 ∈ ℕ0 ) |
57 |
56
|
faccld |
⊢ ( 𝜑 → ( ! ‘ 𝑄 ) ∈ ℕ ) |
58 |
57
|
nncnd |
⊢ ( 𝜑 → ( ! ‘ 𝑄 ) ∈ ℂ ) |
59 |
|
ere |
⊢ e ∈ ℝ |
60 |
59
|
recni |
⊢ e ∈ ℂ |
61 |
60
|
a1i |
⊢ ( 𝜑 → e ∈ ℂ ) |
62 |
58 61 21
|
subdid |
⊢ ( 𝜑 → ( ( ! ‘ 𝑄 ) · ( e − Σ 𝑘 ∈ ( 0 ... 𝑄 ) ( 𝐹 ‘ 𝑘 ) ) ) = ( ( ( ! ‘ 𝑄 ) · e ) − ( ( ! ‘ 𝑄 ) · Σ 𝑘 ∈ ( 0 ... 𝑄 ) ( 𝐹 ‘ 𝑘 ) ) ) ) |
63 |
55 62
|
eqtr3d |
⊢ ( 𝜑 → ( ( ! ‘ 𝑄 ) · Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑄 + 1 ) ) ( 𝐹 ‘ 𝑘 ) ) = ( ( ( ! ‘ 𝑄 ) · e ) − ( ( ! ‘ 𝑄 ) · Σ 𝑘 ∈ ( 0 ... 𝑄 ) ( 𝐹 ‘ 𝑘 ) ) ) ) |
64 |
4
|
oveq2d |
⊢ ( 𝜑 → ( ( ! ‘ 𝑄 ) · e ) = ( ( ! ‘ 𝑄 ) · ( 𝑃 / 𝑄 ) ) ) |
65 |
2
|
zcnd |
⊢ ( 𝜑 → 𝑃 ∈ ℂ ) |
66 |
3
|
nnne0d |
⊢ ( 𝜑 → 𝑄 ≠ 0 ) |
67 |
58 65 47 66
|
div12d |
⊢ ( 𝜑 → ( ( ! ‘ 𝑄 ) · ( 𝑃 / 𝑄 ) ) = ( 𝑃 · ( ( ! ‘ 𝑄 ) / 𝑄 ) ) ) |
68 |
64 67
|
eqtrd |
⊢ ( 𝜑 → ( ( ! ‘ 𝑄 ) · e ) = ( 𝑃 · ( ( ! ‘ 𝑄 ) / 𝑄 ) ) ) |
69 |
3
|
nnred |
⊢ ( 𝜑 → 𝑄 ∈ ℝ ) |
70 |
69
|
leidd |
⊢ ( 𝜑 → 𝑄 ≤ 𝑄 ) |
71 |
|
facdiv |
⊢ ( ( 𝑄 ∈ ℕ0 ∧ 𝑄 ∈ ℕ ∧ 𝑄 ≤ 𝑄 ) → ( ( ! ‘ 𝑄 ) / 𝑄 ) ∈ ℕ ) |
72 |
56 3 70 71
|
syl3anc |
⊢ ( 𝜑 → ( ( ! ‘ 𝑄 ) / 𝑄 ) ∈ ℕ ) |
73 |
72
|
nnzd |
⊢ ( 𝜑 → ( ( ! ‘ 𝑄 ) / 𝑄 ) ∈ ℤ ) |
74 |
2 73
|
zmulcld |
⊢ ( 𝜑 → ( 𝑃 · ( ( ! ‘ 𝑄 ) / 𝑄 ) ) ∈ ℤ ) |
75 |
68 74
|
eqeltrd |
⊢ ( 𝜑 → ( ( ! ‘ 𝑄 ) · e ) ∈ ℤ ) |
76 |
5 58 20
|
fsummulc2 |
⊢ ( 𝜑 → ( ( ! ‘ 𝑄 ) · Σ 𝑘 ∈ ( 0 ... 𝑄 ) ( 𝐹 ‘ 𝑘 ) ) = Σ 𝑘 ∈ ( 0 ... 𝑄 ) ( ( ! ‘ 𝑄 ) · ( 𝐹 ‘ 𝑘 ) ) ) |
77 |
6
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑄 ) ) → 𝑘 ∈ ℕ0 ) |
78 |
77 30
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑄 ) ) → ( 𝐹 ‘ 𝑘 ) = ( 1 / ( ! ‘ 𝑘 ) ) ) |
79 |
78
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑄 ) ) → ( ( ! ‘ 𝑄 ) · ( 𝐹 ‘ 𝑘 ) ) = ( ( ! ‘ 𝑄 ) · ( 1 / ( ! ‘ 𝑘 ) ) ) ) |
80 |
58
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑄 ) ) → ( ! ‘ 𝑄 ) ∈ ℂ ) |
81 |
6 33
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑄 ) ) → ( ! ‘ 𝑘 ) ∈ ℕ ) |
82 |
81
|
nncnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑄 ) ) → ( ! ‘ 𝑘 ) ∈ ℂ ) |
83 |
|
facne0 |
⊢ ( 𝑘 ∈ ℕ0 → ( ! ‘ 𝑘 ) ≠ 0 ) |
84 |
77 83
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑄 ) ) → ( ! ‘ 𝑘 ) ≠ 0 ) |
85 |
80 82 84
|
divrecd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑄 ) ) → ( ( ! ‘ 𝑄 ) / ( ! ‘ 𝑘 ) ) = ( ( ! ‘ 𝑄 ) · ( 1 / ( ! ‘ 𝑘 ) ) ) ) |
86 |
79 85
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑄 ) ) → ( ( ! ‘ 𝑄 ) · ( 𝐹 ‘ 𝑘 ) ) = ( ( ! ‘ 𝑄 ) / ( ! ‘ 𝑘 ) ) ) |
87 |
|
permnn |
⊢ ( 𝑘 ∈ ( 0 ... 𝑄 ) → ( ( ! ‘ 𝑄 ) / ( ! ‘ 𝑘 ) ) ∈ ℕ ) |
88 |
87
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑄 ) ) → ( ( ! ‘ 𝑄 ) / ( ! ‘ 𝑘 ) ) ∈ ℕ ) |
89 |
86 88
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑄 ) ) → ( ( ! ‘ 𝑄 ) · ( 𝐹 ‘ 𝑘 ) ) ∈ ℕ ) |
90 |
89
|
nnzd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑄 ) ) → ( ( ! ‘ 𝑄 ) · ( 𝐹 ‘ 𝑘 ) ) ∈ ℤ ) |
91 |
5 90
|
fsumzcl |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 0 ... 𝑄 ) ( ( ! ‘ 𝑄 ) · ( 𝐹 ‘ 𝑘 ) ) ∈ ℤ ) |
92 |
76 91
|
eqeltrd |
⊢ ( 𝜑 → ( ( ! ‘ 𝑄 ) · Σ 𝑘 ∈ ( 0 ... 𝑄 ) ( 𝐹 ‘ 𝑘 ) ) ∈ ℤ ) |
93 |
75 92
|
zsubcld |
⊢ ( 𝜑 → ( ( ( ! ‘ 𝑄 ) · e ) − ( ( ! ‘ 𝑄 ) · Σ 𝑘 ∈ ( 0 ... 𝑄 ) ( 𝐹 ‘ 𝑘 ) ) ) ∈ ℤ ) |
94 |
63 93
|
eqeltrd |
⊢ ( 𝜑 → ( ( ! ‘ 𝑄 ) · Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑄 + 1 ) ) ( 𝐹 ‘ 𝑘 ) ) ∈ ℤ ) |
95 |
|
0zd |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
96 |
57
|
nnrpd |
⊢ ( 𝜑 → ( ! ‘ 𝑄 ) ∈ ℝ+ ) |
97 |
96 39
|
rpmulcld |
⊢ ( 𝜑 → ( ( ! ‘ 𝑄 ) · Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑄 + 1 ) ) ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ+ ) |
98 |
97
|
rpgt0d |
⊢ ( 𝜑 → 0 < ( ( ! ‘ 𝑄 ) · Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑄 + 1 ) ) ( 𝐹 ‘ 𝑘 ) ) ) |
99 |
24
|
peano2nnd |
⊢ ( 𝜑 → ( ( 𝑄 + 1 ) + 1 ) ∈ ℕ ) |
100 |
99
|
nnred |
⊢ ( 𝜑 → ( ( 𝑄 + 1 ) + 1 ) ∈ ℝ ) |
101 |
25
|
faccld |
⊢ ( 𝜑 → ( ! ‘ ( 𝑄 + 1 ) ) ∈ ℕ ) |
102 |
101 24
|
nnmulcld |
⊢ ( 𝜑 → ( ( ! ‘ ( 𝑄 + 1 ) ) · ( 𝑄 + 1 ) ) ∈ ℕ ) |
103 |
100 102
|
nndivred |
⊢ ( 𝜑 → ( ( ( 𝑄 + 1 ) + 1 ) / ( ( ! ‘ ( 𝑄 + 1 ) ) · ( 𝑄 + 1 ) ) ) ∈ ℝ ) |
104 |
57
|
nnrecred |
⊢ ( 𝜑 → ( 1 / ( ! ‘ 𝑄 ) ) ∈ ℝ ) |
105 |
|
abs1 |
⊢ ( abs ‘ 1 ) = 1 |
106 |
105
|
oveq1i |
⊢ ( ( abs ‘ 1 ) ↑ 𝑛 ) = ( 1 ↑ 𝑛 ) |
107 |
106
|
oveq1i |
⊢ ( ( ( abs ‘ 1 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) = ( ( 1 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) |
108 |
107
|
mpteq2i |
⊢ ( 𝑛 ∈ ℕ0 ↦ ( ( ( abs ‘ 1 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 1 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) |
109 |
12 108
|
eqtr4i |
⊢ 𝐹 = ( 𝑛 ∈ ℕ0 ↦ ( ( ( abs ‘ 1 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) |
110 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ0 ↦ ( ( ( ( abs ‘ 1 ) ↑ ( 𝑄 + 1 ) ) / ( ! ‘ ( 𝑄 + 1 ) ) ) · ( ( 1 / ( ( 𝑄 + 1 ) + 1 ) ) ↑ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( ( abs ‘ 1 ) ↑ ( 𝑄 + 1 ) ) / ( ! ‘ ( 𝑄 + 1 ) ) ) · ( ( 1 / ( ( 𝑄 + 1 ) + 1 ) ) ↑ 𝑛 ) ) ) |
111 |
|
1le1 |
⊢ 1 ≤ 1 |
112 |
105 111
|
eqbrtri |
⊢ ( abs ‘ 1 ) ≤ 1 |
113 |
112
|
a1i |
⊢ ( 𝜑 → ( abs ‘ 1 ) ≤ 1 ) |
114 |
12 109 110 24 16 113
|
eftlub |
⊢ ( 𝜑 → ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑄 + 1 ) ) ( 𝐹 ‘ 𝑘 ) ) ≤ ( ( ( abs ‘ 1 ) ↑ ( 𝑄 + 1 ) ) · ( ( ( 𝑄 + 1 ) + 1 ) / ( ( ! ‘ ( 𝑄 + 1 ) ) · ( 𝑄 + 1 ) ) ) ) ) |
115 |
39
|
rprege0d |
⊢ ( 𝜑 → ( Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑄 + 1 ) ) ( 𝐹 ‘ 𝑘 ) ∈ ℝ ∧ 0 ≤ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑄 + 1 ) ) ( 𝐹 ‘ 𝑘 ) ) ) |
116 |
|
absid |
⊢ ( ( Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑄 + 1 ) ) ( 𝐹 ‘ 𝑘 ) ∈ ℝ ∧ 0 ≤ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑄 + 1 ) ) ( 𝐹 ‘ 𝑘 ) ) → ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑄 + 1 ) ) ( 𝐹 ‘ 𝑘 ) ) = Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑄 + 1 ) ) ( 𝐹 ‘ 𝑘 ) ) |
117 |
115 116
|
syl |
⊢ ( 𝜑 → ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑄 + 1 ) ) ( 𝐹 ‘ 𝑘 ) ) = Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑄 + 1 ) ) ( 𝐹 ‘ 𝑘 ) ) |
118 |
105
|
oveq1i |
⊢ ( ( abs ‘ 1 ) ↑ ( 𝑄 + 1 ) ) = ( 1 ↑ ( 𝑄 + 1 ) ) |
119 |
24
|
nnzd |
⊢ ( 𝜑 → ( 𝑄 + 1 ) ∈ ℤ ) |
120 |
|
1exp |
⊢ ( ( 𝑄 + 1 ) ∈ ℤ → ( 1 ↑ ( 𝑄 + 1 ) ) = 1 ) |
121 |
119 120
|
syl |
⊢ ( 𝜑 → ( 1 ↑ ( 𝑄 + 1 ) ) = 1 ) |
122 |
118 121
|
eqtrid |
⊢ ( 𝜑 → ( ( abs ‘ 1 ) ↑ ( 𝑄 + 1 ) ) = 1 ) |
123 |
122
|
oveq1d |
⊢ ( 𝜑 → ( ( ( abs ‘ 1 ) ↑ ( 𝑄 + 1 ) ) · ( ( ( 𝑄 + 1 ) + 1 ) / ( ( ! ‘ ( 𝑄 + 1 ) ) · ( 𝑄 + 1 ) ) ) ) = ( 1 · ( ( ( 𝑄 + 1 ) + 1 ) / ( ( ! ‘ ( 𝑄 + 1 ) ) · ( 𝑄 + 1 ) ) ) ) ) |
124 |
103
|
recnd |
⊢ ( 𝜑 → ( ( ( 𝑄 + 1 ) + 1 ) / ( ( ! ‘ ( 𝑄 + 1 ) ) · ( 𝑄 + 1 ) ) ) ∈ ℂ ) |
125 |
124
|
mulid2d |
⊢ ( 𝜑 → ( 1 · ( ( ( 𝑄 + 1 ) + 1 ) / ( ( ! ‘ ( 𝑄 + 1 ) ) · ( 𝑄 + 1 ) ) ) ) = ( ( ( 𝑄 + 1 ) + 1 ) / ( ( ! ‘ ( 𝑄 + 1 ) ) · ( 𝑄 + 1 ) ) ) ) |
126 |
123 125
|
eqtrd |
⊢ ( 𝜑 → ( ( ( abs ‘ 1 ) ↑ ( 𝑄 + 1 ) ) · ( ( ( 𝑄 + 1 ) + 1 ) / ( ( ! ‘ ( 𝑄 + 1 ) ) · ( 𝑄 + 1 ) ) ) ) = ( ( ( 𝑄 + 1 ) + 1 ) / ( ( ! ‘ ( 𝑄 + 1 ) ) · ( 𝑄 + 1 ) ) ) ) |
127 |
114 117 126
|
3brtr3d |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑄 + 1 ) ) ( 𝐹 ‘ 𝑘 ) ≤ ( ( ( 𝑄 + 1 ) + 1 ) / ( ( ! ‘ ( 𝑄 + 1 ) ) · ( 𝑄 + 1 ) ) ) ) |
128 |
24
|
nnred |
⊢ ( 𝜑 → ( 𝑄 + 1 ) ∈ ℝ ) |
129 |
128 128
|
readdcld |
⊢ ( 𝜑 → ( ( 𝑄 + 1 ) + ( 𝑄 + 1 ) ) ∈ ℝ ) |
130 |
128 128
|
remulcld |
⊢ ( 𝜑 → ( ( 𝑄 + 1 ) · ( 𝑄 + 1 ) ) ∈ ℝ ) |
131 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
132 |
3
|
nnge1d |
⊢ ( 𝜑 → 1 ≤ 𝑄 ) |
133 |
|
1nn |
⊢ 1 ∈ ℕ |
134 |
|
nnleltp1 |
⊢ ( ( 1 ∈ ℕ ∧ 𝑄 ∈ ℕ ) → ( 1 ≤ 𝑄 ↔ 1 < ( 𝑄 + 1 ) ) ) |
135 |
133 3 134
|
sylancr |
⊢ ( 𝜑 → ( 1 ≤ 𝑄 ↔ 1 < ( 𝑄 + 1 ) ) ) |
136 |
132 135
|
mpbid |
⊢ ( 𝜑 → 1 < ( 𝑄 + 1 ) ) |
137 |
131 128 128 136
|
ltadd2dd |
⊢ ( 𝜑 → ( ( 𝑄 + 1 ) + 1 ) < ( ( 𝑄 + 1 ) + ( 𝑄 + 1 ) ) ) |
138 |
24
|
nncnd |
⊢ ( 𝜑 → ( 𝑄 + 1 ) ∈ ℂ ) |
139 |
138
|
2timesd |
⊢ ( 𝜑 → ( 2 · ( 𝑄 + 1 ) ) = ( ( 𝑄 + 1 ) + ( 𝑄 + 1 ) ) ) |
140 |
|
df-2 |
⊢ 2 = ( 1 + 1 ) |
141 |
131 69 131 132
|
leadd1dd |
⊢ ( 𝜑 → ( 1 + 1 ) ≤ ( 𝑄 + 1 ) ) |
142 |
140 141
|
eqbrtrid |
⊢ ( 𝜑 → 2 ≤ ( 𝑄 + 1 ) ) |
143 |
|
2re |
⊢ 2 ∈ ℝ |
144 |
143
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℝ ) |
145 |
24
|
nngt0d |
⊢ ( 𝜑 → 0 < ( 𝑄 + 1 ) ) |
146 |
|
lemul1 |
⊢ ( ( 2 ∈ ℝ ∧ ( 𝑄 + 1 ) ∈ ℝ ∧ ( ( 𝑄 + 1 ) ∈ ℝ ∧ 0 < ( 𝑄 + 1 ) ) ) → ( 2 ≤ ( 𝑄 + 1 ) ↔ ( 2 · ( 𝑄 + 1 ) ) ≤ ( ( 𝑄 + 1 ) · ( 𝑄 + 1 ) ) ) ) |
147 |
144 128 128 145 146
|
syl112anc |
⊢ ( 𝜑 → ( 2 ≤ ( 𝑄 + 1 ) ↔ ( 2 · ( 𝑄 + 1 ) ) ≤ ( ( 𝑄 + 1 ) · ( 𝑄 + 1 ) ) ) ) |
148 |
142 147
|
mpbid |
⊢ ( 𝜑 → ( 2 · ( 𝑄 + 1 ) ) ≤ ( ( 𝑄 + 1 ) · ( 𝑄 + 1 ) ) ) |
149 |
139 148
|
eqbrtrrd |
⊢ ( 𝜑 → ( ( 𝑄 + 1 ) + ( 𝑄 + 1 ) ) ≤ ( ( 𝑄 + 1 ) · ( 𝑄 + 1 ) ) ) |
150 |
100 129 130 137 149
|
ltletrd |
⊢ ( 𝜑 → ( ( 𝑄 + 1 ) + 1 ) < ( ( 𝑄 + 1 ) · ( 𝑄 + 1 ) ) ) |
151 |
|
facp1 |
⊢ ( 𝑄 ∈ ℕ0 → ( ! ‘ ( 𝑄 + 1 ) ) = ( ( ! ‘ 𝑄 ) · ( 𝑄 + 1 ) ) ) |
152 |
56 151
|
syl |
⊢ ( 𝜑 → ( ! ‘ ( 𝑄 + 1 ) ) = ( ( ! ‘ 𝑄 ) · ( 𝑄 + 1 ) ) ) |
153 |
152
|
oveq1d |
⊢ ( 𝜑 → ( ( ! ‘ ( 𝑄 + 1 ) ) / ( ! ‘ 𝑄 ) ) = ( ( ( ! ‘ 𝑄 ) · ( 𝑄 + 1 ) ) / ( ! ‘ 𝑄 ) ) ) |
154 |
101
|
nncnd |
⊢ ( 𝜑 → ( ! ‘ ( 𝑄 + 1 ) ) ∈ ℂ ) |
155 |
57
|
nnne0d |
⊢ ( 𝜑 → ( ! ‘ 𝑄 ) ≠ 0 ) |
156 |
154 58 155
|
divrecd |
⊢ ( 𝜑 → ( ( ! ‘ ( 𝑄 + 1 ) ) / ( ! ‘ 𝑄 ) ) = ( ( ! ‘ ( 𝑄 + 1 ) ) · ( 1 / ( ! ‘ 𝑄 ) ) ) ) |
157 |
138 58 155
|
divcan3d |
⊢ ( 𝜑 → ( ( ( ! ‘ 𝑄 ) · ( 𝑄 + 1 ) ) / ( ! ‘ 𝑄 ) ) = ( 𝑄 + 1 ) ) |
158 |
153 156 157
|
3eqtr3rd |
⊢ ( 𝜑 → ( 𝑄 + 1 ) = ( ( ! ‘ ( 𝑄 + 1 ) ) · ( 1 / ( ! ‘ 𝑄 ) ) ) ) |
159 |
158
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑄 + 1 ) · ( 𝑄 + 1 ) ) = ( ( ( ! ‘ ( 𝑄 + 1 ) ) · ( 1 / ( ! ‘ 𝑄 ) ) ) · ( 𝑄 + 1 ) ) ) |
160 |
104
|
recnd |
⊢ ( 𝜑 → ( 1 / ( ! ‘ 𝑄 ) ) ∈ ℂ ) |
161 |
154 160 138
|
mul32d |
⊢ ( 𝜑 → ( ( ( ! ‘ ( 𝑄 + 1 ) ) · ( 1 / ( ! ‘ 𝑄 ) ) ) · ( 𝑄 + 1 ) ) = ( ( ( ! ‘ ( 𝑄 + 1 ) ) · ( 𝑄 + 1 ) ) · ( 1 / ( ! ‘ 𝑄 ) ) ) ) |
162 |
159 161
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑄 + 1 ) · ( 𝑄 + 1 ) ) = ( ( ( ! ‘ ( 𝑄 + 1 ) ) · ( 𝑄 + 1 ) ) · ( 1 / ( ! ‘ 𝑄 ) ) ) ) |
163 |
150 162
|
breqtrd |
⊢ ( 𝜑 → ( ( 𝑄 + 1 ) + 1 ) < ( ( ( ! ‘ ( 𝑄 + 1 ) ) · ( 𝑄 + 1 ) ) · ( 1 / ( ! ‘ 𝑄 ) ) ) ) |
164 |
102
|
nnred |
⊢ ( 𝜑 → ( ( ! ‘ ( 𝑄 + 1 ) ) · ( 𝑄 + 1 ) ) ∈ ℝ ) |
165 |
102
|
nngt0d |
⊢ ( 𝜑 → 0 < ( ( ! ‘ ( 𝑄 + 1 ) ) · ( 𝑄 + 1 ) ) ) |
166 |
|
ltdivmul |
⊢ ( ( ( ( 𝑄 + 1 ) + 1 ) ∈ ℝ ∧ ( 1 / ( ! ‘ 𝑄 ) ) ∈ ℝ ∧ ( ( ( ! ‘ ( 𝑄 + 1 ) ) · ( 𝑄 + 1 ) ) ∈ ℝ ∧ 0 < ( ( ! ‘ ( 𝑄 + 1 ) ) · ( 𝑄 + 1 ) ) ) ) → ( ( ( ( 𝑄 + 1 ) + 1 ) / ( ( ! ‘ ( 𝑄 + 1 ) ) · ( 𝑄 + 1 ) ) ) < ( 1 / ( ! ‘ 𝑄 ) ) ↔ ( ( 𝑄 + 1 ) + 1 ) < ( ( ( ! ‘ ( 𝑄 + 1 ) ) · ( 𝑄 + 1 ) ) · ( 1 / ( ! ‘ 𝑄 ) ) ) ) ) |
167 |
100 104 164 165 166
|
syl112anc |
⊢ ( 𝜑 → ( ( ( ( 𝑄 + 1 ) + 1 ) / ( ( ! ‘ ( 𝑄 + 1 ) ) · ( 𝑄 + 1 ) ) ) < ( 1 / ( ! ‘ 𝑄 ) ) ↔ ( ( 𝑄 + 1 ) + 1 ) < ( ( ( ! ‘ ( 𝑄 + 1 ) ) · ( 𝑄 + 1 ) ) · ( 1 / ( ! ‘ 𝑄 ) ) ) ) ) |
168 |
163 167
|
mpbird |
⊢ ( 𝜑 → ( ( ( 𝑄 + 1 ) + 1 ) / ( ( ! ‘ ( 𝑄 + 1 ) ) · ( 𝑄 + 1 ) ) ) < ( 1 / ( ! ‘ 𝑄 ) ) ) |
169 |
40 103 104 127 168
|
lelttrd |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑄 + 1 ) ) ( 𝐹 ‘ 𝑘 ) < ( 1 / ( ! ‘ 𝑄 ) ) ) |
170 |
40 131 96
|
ltmuldiv2d |
⊢ ( 𝜑 → ( ( ( ! ‘ 𝑄 ) · Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑄 + 1 ) ) ( 𝐹 ‘ 𝑘 ) ) < 1 ↔ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑄 + 1 ) ) ( 𝐹 ‘ 𝑘 ) < ( 1 / ( ! ‘ 𝑄 ) ) ) ) |
171 |
169 170
|
mpbird |
⊢ ( 𝜑 → ( ( ! ‘ 𝑄 ) · Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑄 + 1 ) ) ( 𝐹 ‘ 𝑘 ) ) < 1 ) |
172 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
173 |
171 172
|
breqtrrdi |
⊢ ( 𝜑 → ( ( ! ‘ 𝑄 ) · Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑄 + 1 ) ) ( 𝐹 ‘ 𝑘 ) ) < ( 0 + 1 ) ) |
174 |
|
btwnnz |
⊢ ( ( 0 ∈ ℤ ∧ 0 < ( ( ! ‘ 𝑄 ) · Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑄 + 1 ) ) ( 𝐹 ‘ 𝑘 ) ) ∧ ( ( ! ‘ 𝑄 ) · Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑄 + 1 ) ) ( 𝐹 ‘ 𝑘 ) ) < ( 0 + 1 ) ) → ¬ ( ( ! ‘ 𝑄 ) · Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑄 + 1 ) ) ( 𝐹 ‘ 𝑘 ) ) ∈ ℤ ) |
175 |
95 98 173 174
|
syl3anc |
⊢ ( 𝜑 → ¬ ( ( ! ‘ 𝑄 ) · Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑄 + 1 ) ) ( 𝐹 ‘ 𝑘 ) ) ∈ ℤ ) |
176 |
94 175
|
pm2.65i |
⊢ ¬ 𝜑 |