Description: Every set is an element of some other set. See elALT for a shorter proof using more axioms. (Contributed by NM, 4-Jan-2002) (Proof shortened by Andrew Salmon, 25-Jul-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | el | ⊢ ∃ 𝑦 𝑥 ∈ 𝑦 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zfpow | ⊢ ∃ 𝑦 ∀ 𝑧 ( ∀ 𝑦 ( 𝑦 ∈ 𝑧 → 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑦 ) | |
2 | ax9 | ⊢ ( 𝑧 = 𝑥 → ( 𝑦 ∈ 𝑧 → 𝑦 ∈ 𝑥 ) ) | |
3 | 2 | alrimiv | ⊢ ( 𝑧 = 𝑥 → ∀ 𝑦 ( 𝑦 ∈ 𝑧 → 𝑦 ∈ 𝑥 ) ) |
4 | ax8 | ⊢ ( 𝑧 = 𝑥 → ( 𝑧 ∈ 𝑦 → 𝑥 ∈ 𝑦 ) ) | |
5 | 3 4 | embantd | ⊢ ( 𝑧 = 𝑥 → ( ( ∀ 𝑦 ( 𝑦 ∈ 𝑧 → 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑦 ) → 𝑥 ∈ 𝑦 ) ) |
6 | 5 | spimvw | ⊢ ( ∀ 𝑧 ( ∀ 𝑦 ( 𝑦 ∈ 𝑧 → 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑦 ) → 𝑥 ∈ 𝑦 ) |
7 | 1 6 | eximii | ⊢ ∃ 𝑦 𝑥 ∈ 𝑦 |