Metamath Proof Explorer


Theorem el021old

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 13-Jun-2015) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses el021old.1 𝜑
el021old.2 (    (    𝜓    ,    𝜒    )    ▶    𝜃    )
el021old.3 ( ( 𝜑𝜃 ) → 𝜏 )
Assertion el021old (    (    𝜓    ,    𝜒    )    ▶    𝜏    )

Proof

Step Hyp Ref Expression
1 el021old.1 𝜑
2 el021old.2 (    (    𝜓    ,    𝜒    )    ▶    𝜃    )
3 el021old.3 ( ( 𝜑𝜃 ) → 𝜏 )
4 2 dfvd2ani ( ( 𝜓𝜒 ) → 𝜃 )
5 1 4 3 sylancr ( ( 𝜓𝜒 ) → 𝜏 )
6 5 dfvd2anir (    (    𝜓    ,    𝜒    )    ▶    𝜏    )