Metamath Proof Explorer
		
		
		
		Description:  Virtual deduction form of syl2an .  (Contributed by Alan Sare, 23-Apr-2015)  (Proof modification is discouraged.)
       (New usage is discouraged.)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | el12.1 | ⊢ (    𝜑    ▶    𝜓    ) | 
					
						|  |  | el12.2 | ⊢ (    𝜏    ▶    𝜒    ) | 
					
						|  |  | el12.3 | ⊢ ( ( 𝜓  ∧  𝜒 )  →  𝜃 ) | 
				
					|  | Assertion | el12 | ⊢  (    (    𝜑    ,    𝜏    )    ▶    𝜃    ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | el12.1 | ⊢ (    𝜑    ▶    𝜓    ) | 
						
							| 2 |  | el12.2 | ⊢ (    𝜏    ▶    𝜒    ) | 
						
							| 3 |  | el12.3 | ⊢ ( ( 𝜓  ∧  𝜒 )  →  𝜃 ) | 
						
							| 4 | 1 | in1 | ⊢ ( 𝜑  →  𝜓 ) | 
						
							| 5 | 2 | in1 | ⊢ ( 𝜏  →  𝜒 ) | 
						
							| 6 | 4 5 3 | syl2an | ⊢ ( ( 𝜑  ∧  𝜏 )  →  𝜃 ) | 
						
							| 7 | 6 | dfvd2anir | ⊢ (    (    𝜑    ,    𝜏    )    ▶    𝜃    ) |