Metamath Proof Explorer


Theorem el123

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 13-Jun-2015) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses el123.1 (    𝜑    ▶    𝜓    )
el123.2 (    𝜒    ▶    𝜃    )
el123.3 (    𝜏    ▶    𝜂    )
el123.4 ( ( 𝜓𝜃𝜂 ) → 𝜁 )
Assertion el123 (    (    𝜑    ,    𝜒    ,    𝜏    )    ▶    𝜁    )

Proof

Step Hyp Ref Expression
1 el123.1 (    𝜑    ▶    𝜓    )
2 el123.2 (    𝜒    ▶    𝜃    )
3 el123.3 (    𝜏    ▶    𝜂    )
4 el123.4 ( ( 𝜓𝜃𝜂 ) → 𝜁 )
5 1 in1 ( 𝜑𝜓 )
6 2 in1 ( 𝜒𝜃 )
7 3 in1 ( 𝜏𝜂 )
8 5 6 7 4 syl3an ( ( 𝜑𝜒𝜏 ) → 𝜁 )
9 8 dfvd3anir (    (    𝜑    ,    𝜒    ,    𝜏    )    ▶    𝜁    )