Step |
Hyp |
Ref |
Expression |
1 |
|
elfzelz |
⊢ ( 𝐼 ∈ ( 0 ... 𝑁 ) → 𝐼 ∈ ℤ ) |
2 |
|
1fzopredsuc |
⊢ ( 𝑁 ∈ ℕ0 → ( 0 ... 𝑁 ) = ( ( { 0 } ∪ ( 1 ..^ 𝑁 ) ) ∪ { 𝑁 } ) ) |
3 |
2
|
eleq2d |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝐼 ∈ ( 0 ... 𝑁 ) ↔ 𝐼 ∈ ( ( { 0 } ∪ ( 1 ..^ 𝑁 ) ) ∪ { 𝑁 } ) ) ) |
4 |
|
elun |
⊢ ( 𝐼 ∈ ( ( { 0 } ∪ ( 1 ..^ 𝑁 ) ) ∪ { 𝑁 } ) ↔ ( 𝐼 ∈ ( { 0 } ∪ ( 1 ..^ 𝑁 ) ) ∨ 𝐼 ∈ { 𝑁 } ) ) |
5 |
|
elun |
⊢ ( 𝐼 ∈ ( { 0 } ∪ ( 1 ..^ 𝑁 ) ) ↔ ( 𝐼 ∈ { 0 } ∨ 𝐼 ∈ ( 1 ..^ 𝑁 ) ) ) |
6 |
5
|
orbi1i |
⊢ ( ( 𝐼 ∈ ( { 0 } ∪ ( 1 ..^ 𝑁 ) ) ∨ 𝐼 ∈ { 𝑁 } ) ↔ ( ( 𝐼 ∈ { 0 } ∨ 𝐼 ∈ ( 1 ..^ 𝑁 ) ) ∨ 𝐼 ∈ { 𝑁 } ) ) |
7 |
4 6
|
bitri |
⊢ ( 𝐼 ∈ ( ( { 0 } ∪ ( 1 ..^ 𝑁 ) ) ∪ { 𝑁 } ) ↔ ( ( 𝐼 ∈ { 0 } ∨ 𝐼 ∈ ( 1 ..^ 𝑁 ) ) ∨ 𝐼 ∈ { 𝑁 } ) ) |
8 |
|
elsng |
⊢ ( 𝐼 ∈ ℤ → ( 𝐼 ∈ { 0 } ↔ 𝐼 = 0 ) ) |
9 |
8
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐼 ∈ ℤ ) → ( 𝐼 ∈ { 0 } ↔ 𝐼 = 0 ) ) |
10 |
9
|
orbi1d |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐼 ∈ ℤ ) → ( ( 𝐼 ∈ { 0 } ∨ 𝐼 ∈ ( 1 ..^ 𝑁 ) ) ↔ ( 𝐼 = 0 ∨ 𝐼 ∈ ( 1 ..^ 𝑁 ) ) ) ) |
11 |
|
elsng |
⊢ ( 𝐼 ∈ ℤ → ( 𝐼 ∈ { 𝑁 } ↔ 𝐼 = 𝑁 ) ) |
12 |
11
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐼 ∈ ℤ ) → ( 𝐼 ∈ { 𝑁 } ↔ 𝐼 = 𝑁 ) ) |
13 |
10 12
|
orbi12d |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐼 ∈ ℤ ) → ( ( ( 𝐼 ∈ { 0 } ∨ 𝐼 ∈ ( 1 ..^ 𝑁 ) ) ∨ 𝐼 ∈ { 𝑁 } ) ↔ ( ( 𝐼 = 0 ∨ 𝐼 ∈ ( 1 ..^ 𝑁 ) ) ∨ 𝐼 = 𝑁 ) ) ) |
14 |
7 13
|
syl5bb |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐼 ∈ ℤ ) → ( 𝐼 ∈ ( ( { 0 } ∪ ( 1 ..^ 𝑁 ) ) ∪ { 𝑁 } ) ↔ ( ( 𝐼 = 0 ∨ 𝐼 ∈ ( 1 ..^ 𝑁 ) ) ∨ 𝐼 = 𝑁 ) ) ) |
15 |
|
df-3or |
⊢ ( ( 𝐼 = 0 ∨ 𝐼 ∈ ( 1 ..^ 𝑁 ) ∨ 𝐼 = 𝑁 ) ↔ ( ( 𝐼 = 0 ∨ 𝐼 ∈ ( 1 ..^ 𝑁 ) ) ∨ 𝐼 = 𝑁 ) ) |
16 |
15
|
biimpri |
⊢ ( ( ( 𝐼 = 0 ∨ 𝐼 ∈ ( 1 ..^ 𝑁 ) ) ∨ 𝐼 = 𝑁 ) → ( 𝐼 = 0 ∨ 𝐼 ∈ ( 1 ..^ 𝑁 ) ∨ 𝐼 = 𝑁 ) ) |
17 |
14 16
|
syl6bi |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐼 ∈ ℤ ) → ( 𝐼 ∈ ( ( { 0 } ∪ ( 1 ..^ 𝑁 ) ) ∪ { 𝑁 } ) → ( 𝐼 = 0 ∨ 𝐼 ∈ ( 1 ..^ 𝑁 ) ∨ 𝐼 = 𝑁 ) ) ) |
18 |
17
|
ex |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝐼 ∈ ℤ → ( 𝐼 ∈ ( ( { 0 } ∪ ( 1 ..^ 𝑁 ) ) ∪ { 𝑁 } ) → ( 𝐼 = 0 ∨ 𝐼 ∈ ( 1 ..^ 𝑁 ) ∨ 𝐼 = 𝑁 ) ) ) ) |
19 |
18
|
com23 |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝐼 ∈ ( ( { 0 } ∪ ( 1 ..^ 𝑁 ) ) ∪ { 𝑁 } ) → ( 𝐼 ∈ ℤ → ( 𝐼 = 0 ∨ 𝐼 ∈ ( 1 ..^ 𝑁 ) ∨ 𝐼 = 𝑁 ) ) ) ) |
20 |
3 19
|
sylbid |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝐼 ∈ ( 0 ... 𝑁 ) → ( 𝐼 ∈ ℤ → ( 𝐼 = 0 ∨ 𝐼 ∈ ( 1 ..^ 𝑁 ) ∨ 𝐼 = 𝑁 ) ) ) ) |
21 |
1 20
|
mpdi |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝐼 ∈ ( 0 ... 𝑁 ) → ( 𝐼 = 0 ∨ 𝐼 ∈ ( 1 ..^ 𝑁 ) ∨ 𝐼 = 𝑁 ) ) ) |
22 |
|
c0ex |
⊢ 0 ∈ V |
23 |
22
|
snid |
⊢ 0 ∈ { 0 } |
24 |
23
|
a1i |
⊢ ( 𝐼 = 0 → 0 ∈ { 0 } ) |
25 |
|
eleq1 |
⊢ ( 𝐼 = 0 → ( 𝐼 ∈ { 0 } ↔ 0 ∈ { 0 } ) ) |
26 |
24 25
|
mpbird |
⊢ ( 𝐼 = 0 → 𝐼 ∈ { 0 } ) |
27 |
26
|
a1i |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝐼 = 0 → 𝐼 ∈ { 0 } ) ) |
28 |
|
idd |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝐼 ∈ ( 1 ..^ 𝑁 ) → 𝐼 ∈ ( 1 ..^ 𝑁 ) ) ) |
29 |
|
snidg |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ { 𝑁 } ) |
30 |
|
eleq1 |
⊢ ( 𝐼 = 𝑁 → ( 𝐼 ∈ { 𝑁 } ↔ 𝑁 ∈ { 𝑁 } ) ) |
31 |
29 30
|
syl5ibrcom |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝐼 = 𝑁 → 𝐼 ∈ { 𝑁 } ) ) |
32 |
27 28 31
|
3orim123d |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝐼 = 0 ∨ 𝐼 ∈ ( 1 ..^ 𝑁 ) ∨ 𝐼 = 𝑁 ) → ( 𝐼 ∈ { 0 } ∨ 𝐼 ∈ ( 1 ..^ 𝑁 ) ∨ 𝐼 ∈ { 𝑁 } ) ) ) |
33 |
32
|
imp |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐼 = 0 ∨ 𝐼 ∈ ( 1 ..^ 𝑁 ) ∨ 𝐼 = 𝑁 ) ) → ( 𝐼 ∈ { 0 } ∨ 𝐼 ∈ ( 1 ..^ 𝑁 ) ∨ 𝐼 ∈ { 𝑁 } ) ) |
34 |
|
df-3or |
⊢ ( ( 𝐼 ∈ { 0 } ∨ 𝐼 ∈ ( 1 ..^ 𝑁 ) ∨ 𝐼 ∈ { 𝑁 } ) ↔ ( ( 𝐼 ∈ { 0 } ∨ 𝐼 ∈ ( 1 ..^ 𝑁 ) ) ∨ 𝐼 ∈ { 𝑁 } ) ) |
35 |
33 34
|
sylib |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐼 = 0 ∨ 𝐼 ∈ ( 1 ..^ 𝑁 ) ∨ 𝐼 = 𝑁 ) ) → ( ( 𝐼 ∈ { 0 } ∨ 𝐼 ∈ ( 1 ..^ 𝑁 ) ) ∨ 𝐼 ∈ { 𝑁 } ) ) |
36 |
35 7
|
sylibr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐼 = 0 ∨ 𝐼 ∈ ( 1 ..^ 𝑁 ) ∨ 𝐼 = 𝑁 ) ) → 𝐼 ∈ ( ( { 0 } ∪ ( 1 ..^ 𝑁 ) ) ∪ { 𝑁 } ) ) |
37 |
3
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐼 = 0 ∨ 𝐼 ∈ ( 1 ..^ 𝑁 ) ∨ 𝐼 = 𝑁 ) ) → ( 𝐼 ∈ ( 0 ... 𝑁 ) ↔ 𝐼 ∈ ( ( { 0 } ∪ ( 1 ..^ 𝑁 ) ) ∪ { 𝑁 } ) ) ) |
38 |
36 37
|
mpbird |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐼 = 0 ∨ 𝐼 ∈ ( 1 ..^ 𝑁 ) ∨ 𝐼 = 𝑁 ) ) → 𝐼 ∈ ( 0 ... 𝑁 ) ) |
39 |
38
|
ex |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝐼 = 0 ∨ 𝐼 ∈ ( 1 ..^ 𝑁 ) ∨ 𝐼 = 𝑁 ) → 𝐼 ∈ ( 0 ... 𝑁 ) ) ) |
40 |
21 39
|
impbid |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝐼 ∈ ( 0 ... 𝑁 ) ↔ ( 𝐼 = 0 ∨ 𝐼 ∈ ( 1 ..^ 𝑁 ) ∨ 𝐼 = 𝑁 ) ) ) |