Metamath Proof Explorer


Theorem el1o

Description: Membership in ordinal one. (Contributed by NM, 5-Jan-2005)

Ref Expression
Assertion el1o ( 𝐴 ∈ 1o𝐴 = ∅ )

Proof

Step Hyp Ref Expression
1 df1o2 1o = { ∅ }
2 1 eleq2i ( 𝐴 ∈ 1o𝐴 ∈ { ∅ } )
3 0ex ∅ ∈ V
4 3 elsn2 ( 𝐴 ∈ { ∅ } ↔ 𝐴 = ∅ )
5 2 4 bitri ( 𝐴 ∈ 1o𝐴 = ∅ )