Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alan Sare
Virtual Deduction Theorems
el2122old
Metamath Proof Explorer
Description: A virtual deduction elimination rule. (Contributed by Alan Sare , 13-Jun-2015) (Proof modification is discouraged.)
(New usage is discouraged.)
Ref
Expression
Hypotheses
el2122old.1
⊢ ( ( 𝜑 , 𝜓 ) ▶ 𝜒 )
el2122old.2
⊢ ( 𝜓 ▶ 𝜃 )
el2122old.3
⊢ ( 𝜓 ▶ 𝜏 )
el2122old.4
⊢ ( ( 𝜒 ∧ 𝜃 ∧ 𝜏 ) → 𝜂 )
Assertion
el2122old
⊢ ( ( 𝜑 , 𝜓 ) ▶ 𝜂 )
Proof
Step
Hyp
Ref
Expression
1
el2122old.1
⊢ ( ( 𝜑 , 𝜓 ) ▶ 𝜒 )
2
el2122old.2
⊢ ( 𝜓 ▶ 𝜃 )
3
el2122old.3
⊢ ( 𝜓 ▶ 𝜏 )
4
el2122old.4
⊢ ( ( 𝜒 ∧ 𝜃 ∧ 𝜏 ) → 𝜂 )
5
1
dfvd2ani
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜒 )
6
2
in1
⊢ ( 𝜓 → 𝜃 )
7
3
in1
⊢ ( 𝜓 → 𝜏 )
8
5 6 7 4
eel2122old
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜂 )
9
8
dfvd2anir
⊢ ( ( 𝜑 , 𝜓 ) ▶ 𝜂 )