Step |
Hyp |
Ref |
Expression |
1 |
|
el2mpocl.o |
⊢ 𝑂 = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ ( 𝑠 ∈ 𝐶 , 𝑡 ∈ 𝐷 ↦ 𝐸 ) ) |
2 |
|
el2mpocl.e |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → ( 𝐶 = 𝐹 ∧ 𝐷 = 𝐺 ) ) |
3 |
1
|
el2mpocsbcl |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉 ) → ( 𝑊 ∈ ( 𝑆 ( 𝑋 𝑂 𝑌 ) 𝑇 ) → ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑆 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐶 ∧ 𝑇 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐷 ) ) ) ) |
4 |
|
simpl |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → 𝑋 ∈ 𝐴 ) |
5 |
|
simplr |
⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑥 = 𝑋 ) → 𝑌 ∈ 𝐵 ) |
6 |
2
|
simpld |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → 𝐶 = 𝐹 ) |
7 |
6
|
adantll |
⊢ ( ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) → 𝐶 = 𝐹 ) |
8 |
5 7
|
csbied |
⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑥 = 𝑋 ) → ⦋ 𝑌 / 𝑦 ⦌ 𝐶 = 𝐹 ) |
9 |
4 8
|
csbied |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐶 = 𝐹 ) |
10 |
9
|
eleq2d |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑆 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐶 ↔ 𝑆 ∈ 𝐹 ) ) |
11 |
2
|
simprd |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → 𝐷 = 𝐺 ) |
12 |
11
|
adantll |
⊢ ( ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) → 𝐷 = 𝐺 ) |
13 |
5 12
|
csbied |
⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑥 = 𝑋 ) → ⦋ 𝑌 / 𝑦 ⦌ 𝐷 = 𝐺 ) |
14 |
4 13
|
csbied |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐷 = 𝐺 ) |
15 |
14
|
eleq2d |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑇 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐷 ↔ 𝑇 ∈ 𝐺 ) ) |
16 |
10 15
|
anbi12d |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑆 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐶 ∧ 𝑇 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐷 ) ↔ ( 𝑆 ∈ 𝐹 ∧ 𝑇 ∈ 𝐺 ) ) ) |
17 |
16
|
biimpd |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑆 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐶 ∧ 𝑇 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐷 ) → ( 𝑆 ∈ 𝐹 ∧ 𝑇 ∈ 𝐺 ) ) ) |
18 |
17
|
imdistani |
⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑆 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐶 ∧ 𝑇 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐷 ) ) → ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑆 ∈ 𝐹 ∧ 𝑇 ∈ 𝐺 ) ) ) |
19 |
3 18
|
syl6 |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉 ) → ( 𝑊 ∈ ( 𝑆 ( 𝑋 𝑂 𝑌 ) 𝑇 ) → ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑆 ∈ 𝐹 ∧ 𝑇 ∈ 𝐺 ) ) ) ) |