| Step | Hyp | Ref | Expression | 
						
							| 1 |  | el2mpocl.o | ⊢ 𝑂  =  ( 𝑥  ∈  𝐴 ,  𝑦  ∈  𝐵  ↦  ( 𝑠  ∈  𝐶 ,  𝑡  ∈  𝐷  ↦  𝐸 ) ) | 
						
							| 2 |  | el2mpocl.e | ⊢ ( ( 𝑥  =  𝑋  ∧  𝑦  =  𝑌 )  →  ( 𝐶  =  𝐹  ∧  𝐷  =  𝐺 ) ) | 
						
							| 3 | 1 | el2mpocsbcl | ⊢ ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝐶  ∈  𝑈  ∧  𝐷  ∈  𝑉 )  →  ( 𝑊  ∈  ( 𝑆 ( 𝑋 𝑂 𝑌 ) 𝑇 )  →  ( ( 𝑋  ∈  𝐴  ∧  𝑌  ∈  𝐵 )  ∧  ( 𝑆  ∈  ⦋ 𝑋  /  𝑥 ⦌ ⦋ 𝑌  /  𝑦 ⦌ 𝐶  ∧  𝑇  ∈  ⦋ 𝑋  /  𝑥 ⦌ ⦋ 𝑌  /  𝑦 ⦌ 𝐷 ) ) ) ) | 
						
							| 4 |  | simpl | ⊢ ( ( 𝑋  ∈  𝐴  ∧  𝑌  ∈  𝐵 )  →  𝑋  ∈  𝐴 ) | 
						
							| 5 |  | simplr | ⊢ ( ( ( 𝑋  ∈  𝐴  ∧  𝑌  ∈  𝐵 )  ∧  𝑥  =  𝑋 )  →  𝑌  ∈  𝐵 ) | 
						
							| 6 | 2 | simpld | ⊢ ( ( 𝑥  =  𝑋  ∧  𝑦  =  𝑌 )  →  𝐶  =  𝐹 ) | 
						
							| 7 | 6 | adantll | ⊢ ( ( ( ( 𝑋  ∈  𝐴  ∧  𝑌  ∈  𝐵 )  ∧  𝑥  =  𝑋 )  ∧  𝑦  =  𝑌 )  →  𝐶  =  𝐹 ) | 
						
							| 8 | 5 7 | csbied | ⊢ ( ( ( 𝑋  ∈  𝐴  ∧  𝑌  ∈  𝐵 )  ∧  𝑥  =  𝑋 )  →  ⦋ 𝑌  /  𝑦 ⦌ 𝐶  =  𝐹 ) | 
						
							| 9 | 4 8 | csbied | ⊢ ( ( 𝑋  ∈  𝐴  ∧  𝑌  ∈  𝐵 )  →  ⦋ 𝑋  /  𝑥 ⦌ ⦋ 𝑌  /  𝑦 ⦌ 𝐶  =  𝐹 ) | 
						
							| 10 | 9 | eleq2d | ⊢ ( ( 𝑋  ∈  𝐴  ∧  𝑌  ∈  𝐵 )  →  ( 𝑆  ∈  ⦋ 𝑋  /  𝑥 ⦌ ⦋ 𝑌  /  𝑦 ⦌ 𝐶  ↔  𝑆  ∈  𝐹 ) ) | 
						
							| 11 | 2 | simprd | ⊢ ( ( 𝑥  =  𝑋  ∧  𝑦  =  𝑌 )  →  𝐷  =  𝐺 ) | 
						
							| 12 | 11 | adantll | ⊢ ( ( ( ( 𝑋  ∈  𝐴  ∧  𝑌  ∈  𝐵 )  ∧  𝑥  =  𝑋 )  ∧  𝑦  =  𝑌 )  →  𝐷  =  𝐺 ) | 
						
							| 13 | 5 12 | csbied | ⊢ ( ( ( 𝑋  ∈  𝐴  ∧  𝑌  ∈  𝐵 )  ∧  𝑥  =  𝑋 )  →  ⦋ 𝑌  /  𝑦 ⦌ 𝐷  =  𝐺 ) | 
						
							| 14 | 4 13 | csbied | ⊢ ( ( 𝑋  ∈  𝐴  ∧  𝑌  ∈  𝐵 )  →  ⦋ 𝑋  /  𝑥 ⦌ ⦋ 𝑌  /  𝑦 ⦌ 𝐷  =  𝐺 ) | 
						
							| 15 | 14 | eleq2d | ⊢ ( ( 𝑋  ∈  𝐴  ∧  𝑌  ∈  𝐵 )  →  ( 𝑇  ∈  ⦋ 𝑋  /  𝑥 ⦌ ⦋ 𝑌  /  𝑦 ⦌ 𝐷  ↔  𝑇  ∈  𝐺 ) ) | 
						
							| 16 | 10 15 | anbi12d | ⊢ ( ( 𝑋  ∈  𝐴  ∧  𝑌  ∈  𝐵 )  →  ( ( 𝑆  ∈  ⦋ 𝑋  /  𝑥 ⦌ ⦋ 𝑌  /  𝑦 ⦌ 𝐶  ∧  𝑇  ∈  ⦋ 𝑋  /  𝑥 ⦌ ⦋ 𝑌  /  𝑦 ⦌ 𝐷 )  ↔  ( 𝑆  ∈  𝐹  ∧  𝑇  ∈  𝐺 ) ) ) | 
						
							| 17 | 16 | biimpd | ⊢ ( ( 𝑋  ∈  𝐴  ∧  𝑌  ∈  𝐵 )  →  ( ( 𝑆  ∈  ⦋ 𝑋  /  𝑥 ⦌ ⦋ 𝑌  /  𝑦 ⦌ 𝐶  ∧  𝑇  ∈  ⦋ 𝑋  /  𝑥 ⦌ ⦋ 𝑌  /  𝑦 ⦌ 𝐷 )  →  ( 𝑆  ∈  𝐹  ∧  𝑇  ∈  𝐺 ) ) ) | 
						
							| 18 | 17 | imdistani | ⊢ ( ( ( 𝑋  ∈  𝐴  ∧  𝑌  ∈  𝐵 )  ∧  ( 𝑆  ∈  ⦋ 𝑋  /  𝑥 ⦌ ⦋ 𝑌  /  𝑦 ⦌ 𝐶  ∧  𝑇  ∈  ⦋ 𝑋  /  𝑥 ⦌ ⦋ 𝑌  /  𝑦 ⦌ 𝐷 ) )  →  ( ( 𝑋  ∈  𝐴  ∧  𝑌  ∈  𝐵 )  ∧  ( 𝑆  ∈  𝐹  ∧  𝑇  ∈  𝐺 ) ) ) | 
						
							| 19 | 3 18 | syl6 | ⊢ ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝐶  ∈  𝑈  ∧  𝐷  ∈  𝑉 )  →  ( 𝑊  ∈  ( 𝑆 ( 𝑋 𝑂 𝑌 ) 𝑇 )  →  ( ( 𝑋  ∈  𝐴  ∧  𝑌  ∈  𝐵 )  ∧  ( 𝑆  ∈  𝐹  ∧  𝑇  ∈  𝐺 ) ) ) ) |