Metamath Proof Explorer


Theorem el2mpocsbcl

Description: If the operation value of the operation value of two nested maps-to notation is not empty, all involved arguments belong to the corresponding base classes of the maps-to notations. (Contributed by AV, 21-May-2021)

Ref Expression
Hypothesis el2mpocsbcl.o 𝑂 = ( 𝑥𝐴 , 𝑦𝐵 ↦ ( 𝑠𝐶 , 𝑡𝐷𝐸 ) )
Assertion el2mpocsbcl ( ∀ 𝑥𝐴𝑦𝐵 ( 𝐶𝑈𝐷𝑉 ) → ( 𝑊 ∈ ( 𝑆 ( 𝑋 𝑂 𝑌 ) 𝑇 ) → ( ( 𝑋𝐴𝑌𝐵 ) ∧ ( 𝑆 𝑋 / 𝑥 𝑌 / 𝑦 𝐶𝑇 𝑋 / 𝑥 𝑌 / 𝑦 𝐷 ) ) ) )

Proof

Step Hyp Ref Expression
1 el2mpocsbcl.o 𝑂 = ( 𝑥𝐴 , 𝑦𝐵 ↦ ( 𝑠𝐶 , 𝑡𝐷𝐸 ) )
2 simpl ( ( ( 𝑋𝐴𝑌𝐵 ) ∧ ( ∀ 𝑥𝐴𝑦𝐵 ( 𝐶𝑈𝐷𝑉 ) ∧ 𝑊 ∈ ( 𝑆 ( 𝑋 𝑂 𝑌 ) 𝑇 ) ) ) → ( 𝑋𝐴𝑌𝐵 ) )
3 nfcv 𝑎 ( 𝑠𝐶 , 𝑡𝐷𝐸 )
4 nfcv 𝑏 ( 𝑠𝐶 , 𝑡𝐷𝐸 )
5 nfcsb1v 𝑥 𝑎 / 𝑥 𝑏 / 𝑦 𝐶
6 nfcsb1v 𝑥 𝑎 / 𝑥 𝑏 / 𝑦 𝐷
7 nfcsb1v 𝑥 𝑎 / 𝑥 𝑏 / 𝑦 𝐸
8 5 6 7 nfmpo 𝑥 ( 𝑠 𝑎 / 𝑥 𝑏 / 𝑦 𝐶 , 𝑡 𝑎 / 𝑥 𝑏 / 𝑦 𝐷 𝑎 / 𝑥 𝑏 / 𝑦 𝐸 )
9 nfcv 𝑦 𝑎
10 nfcsb1v 𝑦 𝑏 / 𝑦 𝐶
11 9 10 nfcsbw 𝑦 𝑎 / 𝑥 𝑏 / 𝑦 𝐶
12 nfcsb1v 𝑦 𝑏 / 𝑦 𝐷
13 9 12 nfcsbw 𝑦 𝑎 / 𝑥 𝑏 / 𝑦 𝐷
14 nfcsb1v 𝑦 𝑏 / 𝑦 𝐸
15 9 14 nfcsbw 𝑦 𝑎 / 𝑥 𝑏 / 𝑦 𝐸
16 11 13 15 nfmpo 𝑦 ( 𝑠 𝑎 / 𝑥 𝑏 / 𝑦 𝐶 , 𝑡 𝑎 / 𝑥 𝑏 / 𝑦 𝐷 𝑎 / 𝑥 𝑏 / 𝑦 𝐸 )
17 csbeq1a ( 𝑥 = 𝑎𝐶 = 𝑎 / 𝑥 𝐶 )
18 csbeq1a ( 𝑦 = 𝑏𝐶 = 𝑏 / 𝑦 𝐶 )
19 18 csbeq2dv ( 𝑦 = 𝑏 𝑎 / 𝑥 𝐶 = 𝑎 / 𝑥 𝑏 / 𝑦 𝐶 )
20 17 19 sylan9eq ( ( 𝑥 = 𝑎𝑦 = 𝑏 ) → 𝐶 = 𝑎 / 𝑥 𝑏 / 𝑦 𝐶 )
21 csbeq1a ( 𝑥 = 𝑎𝐷 = 𝑎 / 𝑥 𝐷 )
22 csbeq1a ( 𝑦 = 𝑏𝐷 = 𝑏 / 𝑦 𝐷 )
23 22 csbeq2dv ( 𝑦 = 𝑏 𝑎 / 𝑥 𝐷 = 𝑎 / 𝑥 𝑏 / 𝑦 𝐷 )
24 21 23 sylan9eq ( ( 𝑥 = 𝑎𝑦 = 𝑏 ) → 𝐷 = 𝑎 / 𝑥 𝑏 / 𝑦 𝐷 )
25 csbeq1a ( 𝑥 = 𝑎𝐸 = 𝑎 / 𝑥 𝐸 )
26 csbeq1a ( 𝑦 = 𝑏𝐸 = 𝑏 / 𝑦 𝐸 )
27 26 csbeq2dv ( 𝑦 = 𝑏 𝑎 / 𝑥 𝐸 = 𝑎 / 𝑥 𝑏 / 𝑦 𝐸 )
28 25 27 sylan9eq ( ( 𝑥 = 𝑎𝑦 = 𝑏 ) → 𝐸 = 𝑎 / 𝑥 𝑏 / 𝑦 𝐸 )
29 20 24 28 mpoeq123dv ( ( 𝑥 = 𝑎𝑦 = 𝑏 ) → ( 𝑠𝐶 , 𝑡𝐷𝐸 ) = ( 𝑠 𝑎 / 𝑥 𝑏 / 𝑦 𝐶 , 𝑡 𝑎 / 𝑥 𝑏 / 𝑦 𝐷 𝑎 / 𝑥 𝑏 / 𝑦 𝐸 ) )
30 3 4 8 16 29 cbvmpo ( 𝑥𝐴 , 𝑦𝐵 ↦ ( 𝑠𝐶 , 𝑡𝐷𝐸 ) ) = ( 𝑎𝐴 , 𝑏𝐵 ↦ ( 𝑠 𝑎 / 𝑥 𝑏 / 𝑦 𝐶 , 𝑡 𝑎 / 𝑥 𝑏 / 𝑦 𝐷 𝑎 / 𝑥 𝑏 / 𝑦 𝐸 ) )
31 1 30 eqtri 𝑂 = ( 𝑎𝐴 , 𝑏𝐵 ↦ ( 𝑠 𝑎 / 𝑥 𝑏 / 𝑦 𝐶 , 𝑡 𝑎 / 𝑥 𝑏 / 𝑦 𝐷 𝑎 / 𝑥 𝑏 / 𝑦 𝐸 ) )
32 31 a1i ( ( ∀ 𝑥𝐴𝑦𝐵 ( 𝐶𝑈𝐷𝑉 ) ∧ ( 𝑋𝐴𝑌𝐵 ) ) → 𝑂 = ( 𝑎𝐴 , 𝑏𝐵 ↦ ( 𝑠 𝑎 / 𝑥 𝑏 / 𝑦 𝐶 , 𝑡 𝑎 / 𝑥 𝑏 / 𝑦 𝐷 𝑎 / 𝑥 𝑏 / 𝑦 𝐸 ) ) )
33 csbeq1 ( 𝑎 = 𝑋 𝑎 / 𝑥 𝑏 / 𝑦 𝐶 = 𝑋 / 𝑥 𝑏 / 𝑦 𝐶 )
34 33 adantr ( ( 𝑎 = 𝑋𝑏 = 𝑌 ) → 𝑎 / 𝑥 𝑏 / 𝑦 𝐶 = 𝑋 / 𝑥 𝑏 / 𝑦 𝐶 )
35 csbeq1 ( 𝑏 = 𝑌 𝑏 / 𝑦 𝐶 = 𝑌 / 𝑦 𝐶 )
36 35 adantl ( ( 𝑎 = 𝑋𝑏 = 𝑌 ) → 𝑏 / 𝑦 𝐶 = 𝑌 / 𝑦 𝐶 )
37 36 csbeq2dv ( ( 𝑎 = 𝑋𝑏 = 𝑌 ) → 𝑋 / 𝑥 𝑏 / 𝑦 𝐶 = 𝑋 / 𝑥 𝑌 / 𝑦 𝐶 )
38 34 37 eqtrd ( ( 𝑎 = 𝑋𝑏 = 𝑌 ) → 𝑎 / 𝑥 𝑏 / 𝑦 𝐶 = 𝑋 / 𝑥 𝑌 / 𝑦 𝐶 )
39 csbeq1 ( 𝑎 = 𝑋 𝑎 / 𝑥 𝑏 / 𝑦 𝐷 = 𝑋 / 𝑥 𝑏 / 𝑦 𝐷 )
40 39 adantr ( ( 𝑎 = 𝑋𝑏 = 𝑌 ) → 𝑎 / 𝑥 𝑏 / 𝑦 𝐷 = 𝑋 / 𝑥 𝑏 / 𝑦 𝐷 )
41 csbeq1 ( 𝑏 = 𝑌 𝑏 / 𝑦 𝐷 = 𝑌 / 𝑦 𝐷 )
42 41 adantl ( ( 𝑎 = 𝑋𝑏 = 𝑌 ) → 𝑏 / 𝑦 𝐷 = 𝑌 / 𝑦 𝐷 )
43 42 csbeq2dv ( ( 𝑎 = 𝑋𝑏 = 𝑌 ) → 𝑋 / 𝑥 𝑏 / 𝑦 𝐷 = 𝑋 / 𝑥 𝑌 / 𝑦 𝐷 )
44 40 43 eqtrd ( ( 𝑎 = 𝑋𝑏 = 𝑌 ) → 𝑎 / 𝑥 𝑏 / 𝑦 𝐷 = 𝑋 / 𝑥 𝑌 / 𝑦 𝐷 )
45 csbeq1 ( 𝑎 = 𝑋 𝑎 / 𝑥 𝑏 / 𝑦 𝐸 = 𝑋 / 𝑥 𝑏 / 𝑦 𝐸 )
46 45 adantr ( ( 𝑎 = 𝑋𝑏 = 𝑌 ) → 𝑎 / 𝑥 𝑏 / 𝑦 𝐸 = 𝑋 / 𝑥 𝑏 / 𝑦 𝐸 )
47 csbeq1 ( 𝑏 = 𝑌 𝑏 / 𝑦 𝐸 = 𝑌 / 𝑦 𝐸 )
48 47 adantl ( ( 𝑎 = 𝑋𝑏 = 𝑌 ) → 𝑏 / 𝑦 𝐸 = 𝑌 / 𝑦 𝐸 )
49 48 csbeq2dv ( ( 𝑎 = 𝑋𝑏 = 𝑌 ) → 𝑋 / 𝑥 𝑏 / 𝑦 𝐸 = 𝑋 / 𝑥 𝑌 / 𝑦 𝐸 )
50 46 49 eqtrd ( ( 𝑎 = 𝑋𝑏 = 𝑌 ) → 𝑎 / 𝑥 𝑏 / 𝑦 𝐸 = 𝑋 / 𝑥 𝑌 / 𝑦 𝐸 )
51 38 44 50 mpoeq123dv ( ( 𝑎 = 𝑋𝑏 = 𝑌 ) → ( 𝑠 𝑎 / 𝑥 𝑏 / 𝑦 𝐶 , 𝑡 𝑎 / 𝑥 𝑏 / 𝑦 𝐷 𝑎 / 𝑥 𝑏 / 𝑦 𝐸 ) = ( 𝑠 𝑋 / 𝑥 𝑌 / 𝑦 𝐶 , 𝑡 𝑋 / 𝑥 𝑌 / 𝑦 𝐷 𝑋 / 𝑥 𝑌 / 𝑦 𝐸 ) )
52 51 adantl ( ( ( ∀ 𝑥𝐴𝑦𝐵 ( 𝐶𝑈𝐷𝑉 ) ∧ ( 𝑋𝐴𝑌𝐵 ) ) ∧ ( 𝑎 = 𝑋𝑏 = 𝑌 ) ) → ( 𝑠 𝑎 / 𝑥 𝑏 / 𝑦 𝐶 , 𝑡 𝑎 / 𝑥 𝑏 / 𝑦 𝐷 𝑎 / 𝑥 𝑏 / 𝑦 𝐸 ) = ( 𝑠 𝑋 / 𝑥 𝑌 / 𝑦 𝐶 , 𝑡 𝑋 / 𝑥 𝑌 / 𝑦 𝐷 𝑋 / 𝑥 𝑌 / 𝑦 𝐸 ) )
53 simpl ( ( 𝑋𝐴𝑌𝐵 ) → 𝑋𝐴 )
54 53 adantl ( ( ∀ 𝑥𝐴𝑦𝐵 ( 𝐶𝑈𝐷𝑉 ) ∧ ( 𝑋𝐴𝑌𝐵 ) ) → 𝑋𝐴 )
55 simpr ( ( 𝑋𝐴𝑌𝐵 ) → 𝑌𝐵 )
56 55 adantl ( ( ∀ 𝑥𝐴𝑦𝐵 ( 𝐶𝑈𝐷𝑉 ) ∧ ( 𝑋𝐴𝑌𝐵 ) ) → 𝑌𝐵 )
57 simpl ( ( 𝐶𝑈𝐷𝑉 ) → 𝐶𝑈 )
58 57 ralimi ( ∀ 𝑦𝐵 ( 𝐶𝑈𝐷𝑉 ) → ∀ 𝑦𝐵 𝐶𝑈 )
59 rspcsbela ( ( 𝑌𝐵 ∧ ∀ 𝑦𝐵 𝐶𝑈 ) → 𝑌 / 𝑦 𝐶𝑈 )
60 55 58 59 syl2an ( ( ( 𝑋𝐴𝑌𝐵 ) ∧ ∀ 𝑦𝐵 ( 𝐶𝑈𝐷𝑉 ) ) → 𝑌 / 𝑦 𝐶𝑈 )
61 60 ex ( ( 𝑋𝐴𝑌𝐵 ) → ( ∀ 𝑦𝐵 ( 𝐶𝑈𝐷𝑉 ) → 𝑌 / 𝑦 𝐶𝑈 ) )
62 61 ralimdv ( ( 𝑋𝐴𝑌𝐵 ) → ( ∀ 𝑥𝐴𝑦𝐵 ( 𝐶𝑈𝐷𝑉 ) → ∀ 𝑥𝐴 𝑌 / 𝑦 𝐶𝑈 ) )
63 62 impcom ( ( ∀ 𝑥𝐴𝑦𝐵 ( 𝐶𝑈𝐷𝑉 ) ∧ ( 𝑋𝐴𝑌𝐵 ) ) → ∀ 𝑥𝐴 𝑌 / 𝑦 𝐶𝑈 )
64 rspcsbela ( ( 𝑋𝐴 ∧ ∀ 𝑥𝐴 𝑌 / 𝑦 𝐶𝑈 ) → 𝑋 / 𝑥 𝑌 / 𝑦 𝐶𝑈 )
65 54 63 64 syl2anc ( ( ∀ 𝑥𝐴𝑦𝐵 ( 𝐶𝑈𝐷𝑉 ) ∧ ( 𝑋𝐴𝑌𝐵 ) ) → 𝑋 / 𝑥 𝑌 / 𝑦 𝐶𝑈 )
66 simpr ( ( 𝐶𝑈𝐷𝑉 ) → 𝐷𝑉 )
67 66 ralimi ( ∀ 𝑦𝐵 ( 𝐶𝑈𝐷𝑉 ) → ∀ 𝑦𝐵 𝐷𝑉 )
68 rspcsbela ( ( 𝑌𝐵 ∧ ∀ 𝑦𝐵 𝐷𝑉 ) → 𝑌 / 𝑦 𝐷𝑉 )
69 55 67 68 syl2an ( ( ( 𝑋𝐴𝑌𝐵 ) ∧ ∀ 𝑦𝐵 ( 𝐶𝑈𝐷𝑉 ) ) → 𝑌 / 𝑦 𝐷𝑉 )
70 69 ex ( ( 𝑋𝐴𝑌𝐵 ) → ( ∀ 𝑦𝐵 ( 𝐶𝑈𝐷𝑉 ) → 𝑌 / 𝑦 𝐷𝑉 ) )
71 70 ralimdv ( ( 𝑋𝐴𝑌𝐵 ) → ( ∀ 𝑥𝐴𝑦𝐵 ( 𝐶𝑈𝐷𝑉 ) → ∀ 𝑥𝐴 𝑌 / 𝑦 𝐷𝑉 ) )
72 71 impcom ( ( ∀ 𝑥𝐴𝑦𝐵 ( 𝐶𝑈𝐷𝑉 ) ∧ ( 𝑋𝐴𝑌𝐵 ) ) → ∀ 𝑥𝐴 𝑌 / 𝑦 𝐷𝑉 )
73 rspcsbela ( ( 𝑋𝐴 ∧ ∀ 𝑥𝐴 𝑌 / 𝑦 𝐷𝑉 ) → 𝑋 / 𝑥 𝑌 / 𝑦 𝐷𝑉 )
74 54 72 73 syl2anc ( ( ∀ 𝑥𝐴𝑦𝐵 ( 𝐶𝑈𝐷𝑉 ) ∧ ( 𝑋𝐴𝑌𝐵 ) ) → 𝑋 / 𝑥 𝑌 / 𝑦 𝐷𝑉 )
75 mpoexga ( ( 𝑋 / 𝑥 𝑌 / 𝑦 𝐶𝑈 𝑋 / 𝑥 𝑌 / 𝑦 𝐷𝑉 ) → ( 𝑠 𝑋 / 𝑥 𝑌 / 𝑦 𝐶 , 𝑡 𝑋 / 𝑥 𝑌 / 𝑦 𝐷 𝑋 / 𝑥 𝑌 / 𝑦 𝐸 ) ∈ V )
76 65 74 75 syl2anc ( ( ∀ 𝑥𝐴𝑦𝐵 ( 𝐶𝑈𝐷𝑉 ) ∧ ( 𝑋𝐴𝑌𝐵 ) ) → ( 𝑠 𝑋 / 𝑥 𝑌 / 𝑦 𝐶 , 𝑡 𝑋 / 𝑥 𝑌 / 𝑦 𝐷 𝑋 / 𝑥 𝑌 / 𝑦 𝐸 ) ∈ V )
77 32 52 54 56 76 ovmpod ( ( ∀ 𝑥𝐴𝑦𝐵 ( 𝐶𝑈𝐷𝑉 ) ∧ ( 𝑋𝐴𝑌𝐵 ) ) → ( 𝑋 𝑂 𝑌 ) = ( 𝑠 𝑋 / 𝑥 𝑌 / 𝑦 𝐶 , 𝑡 𝑋 / 𝑥 𝑌 / 𝑦 𝐷 𝑋 / 𝑥 𝑌 / 𝑦 𝐸 ) )
78 77 oveqd ( ( ∀ 𝑥𝐴𝑦𝐵 ( 𝐶𝑈𝐷𝑉 ) ∧ ( 𝑋𝐴𝑌𝐵 ) ) → ( 𝑆 ( 𝑋 𝑂 𝑌 ) 𝑇 ) = ( 𝑆 ( 𝑠 𝑋 / 𝑥 𝑌 / 𝑦 𝐶 , 𝑡 𝑋 / 𝑥 𝑌 / 𝑦 𝐷 𝑋 / 𝑥 𝑌 / 𝑦 𝐸 ) 𝑇 ) )
79 78 eleq2d ( ( ∀ 𝑥𝐴𝑦𝐵 ( 𝐶𝑈𝐷𝑉 ) ∧ ( 𝑋𝐴𝑌𝐵 ) ) → ( 𝑊 ∈ ( 𝑆 ( 𝑋 𝑂 𝑌 ) 𝑇 ) ↔ 𝑊 ∈ ( 𝑆 ( 𝑠 𝑋 / 𝑥 𝑌 / 𝑦 𝐶 , 𝑡 𝑋 / 𝑥 𝑌 / 𝑦 𝐷 𝑋 / 𝑥 𝑌 / 𝑦 𝐸 ) 𝑇 ) ) )
80 eqid ( 𝑠 𝑋 / 𝑥 𝑌 / 𝑦 𝐶 , 𝑡 𝑋 / 𝑥 𝑌 / 𝑦 𝐷 𝑋 / 𝑥 𝑌 / 𝑦 𝐸 ) = ( 𝑠 𝑋 / 𝑥 𝑌 / 𝑦 𝐶 , 𝑡 𝑋 / 𝑥 𝑌 / 𝑦 𝐷 𝑋 / 𝑥 𝑌 / 𝑦 𝐸 )
81 80 elmpocl ( 𝑊 ∈ ( 𝑆 ( 𝑠 𝑋 / 𝑥 𝑌 / 𝑦 𝐶 , 𝑡 𝑋 / 𝑥 𝑌 / 𝑦 𝐷 𝑋 / 𝑥 𝑌 / 𝑦 𝐸 ) 𝑇 ) → ( 𝑆 𝑋 / 𝑥 𝑌 / 𝑦 𝐶𝑇 𝑋 / 𝑥 𝑌 / 𝑦 𝐷 ) )
82 79 81 syl6bi ( ( ∀ 𝑥𝐴𝑦𝐵 ( 𝐶𝑈𝐷𝑉 ) ∧ ( 𝑋𝐴𝑌𝐵 ) ) → ( 𝑊 ∈ ( 𝑆 ( 𝑋 𝑂 𝑌 ) 𝑇 ) → ( 𝑆 𝑋 / 𝑥 𝑌 / 𝑦 𝐶𝑇 𝑋 / 𝑥 𝑌 / 𝑦 𝐷 ) ) )
83 82 impancom ( ( ∀ 𝑥𝐴𝑦𝐵 ( 𝐶𝑈𝐷𝑉 ) ∧ 𝑊 ∈ ( 𝑆 ( 𝑋 𝑂 𝑌 ) 𝑇 ) ) → ( ( 𝑋𝐴𝑌𝐵 ) → ( 𝑆 𝑋 / 𝑥 𝑌 / 𝑦 𝐶𝑇 𝑋 / 𝑥 𝑌 / 𝑦 𝐷 ) ) )
84 83 impcom ( ( ( 𝑋𝐴𝑌𝐵 ) ∧ ( ∀ 𝑥𝐴𝑦𝐵 ( 𝐶𝑈𝐷𝑉 ) ∧ 𝑊 ∈ ( 𝑆 ( 𝑋 𝑂 𝑌 ) 𝑇 ) ) ) → ( 𝑆 𝑋 / 𝑥 𝑌 / 𝑦 𝐶𝑇 𝑋 / 𝑥 𝑌 / 𝑦 𝐷 ) )
85 2 84 jca ( ( ( 𝑋𝐴𝑌𝐵 ) ∧ ( ∀ 𝑥𝐴𝑦𝐵 ( 𝐶𝑈𝐷𝑉 ) ∧ 𝑊 ∈ ( 𝑆 ( 𝑋 𝑂 𝑌 ) 𝑇 ) ) ) → ( ( 𝑋𝐴𝑌𝐵 ) ∧ ( 𝑆 𝑋 / 𝑥 𝑌 / 𝑦 𝐶𝑇 𝑋 / 𝑥 𝑌 / 𝑦 𝐷 ) ) )
86 85 ex ( ( 𝑋𝐴𝑌𝐵 ) → ( ( ∀ 𝑥𝐴𝑦𝐵 ( 𝐶𝑈𝐷𝑉 ) ∧ 𝑊 ∈ ( 𝑆 ( 𝑋 𝑂 𝑌 ) 𝑇 ) ) → ( ( 𝑋𝐴𝑌𝐵 ) ∧ ( 𝑆 𝑋 / 𝑥 𝑌 / 𝑦 𝐶𝑇 𝑋 / 𝑥 𝑌 / 𝑦 𝐷 ) ) ) )
87 1 mpondm0 ( ¬ ( 𝑋𝐴𝑌𝐵 ) → ( 𝑋 𝑂 𝑌 ) = ∅ )
88 87 oveqd ( ¬ ( 𝑋𝐴𝑌𝐵 ) → ( 𝑆 ( 𝑋 𝑂 𝑌 ) 𝑇 ) = ( 𝑆𝑇 ) )
89 88 eleq2d ( ¬ ( 𝑋𝐴𝑌𝐵 ) → ( 𝑊 ∈ ( 𝑆 ( 𝑋 𝑂 𝑌 ) 𝑇 ) ↔ 𝑊 ∈ ( 𝑆𝑇 ) ) )
90 noel ¬ 𝑊 ∈ ∅
91 90 pm2.21i ( 𝑊 ∈ ∅ → ( ( 𝑋𝐴𝑌𝐵 ) ∧ ( 𝑆 𝑋 / 𝑥 𝑌 / 𝑦 𝐶𝑇 𝑋 / 𝑥 𝑌 / 𝑦 𝐷 ) ) )
92 0ov ( 𝑆𝑇 ) = ∅
93 91 92 eleq2s ( 𝑊 ∈ ( 𝑆𝑇 ) → ( ( 𝑋𝐴𝑌𝐵 ) ∧ ( 𝑆 𝑋 / 𝑥 𝑌 / 𝑦 𝐶𝑇 𝑋 / 𝑥 𝑌 / 𝑦 𝐷 ) ) )
94 89 93 syl6bi ( ¬ ( 𝑋𝐴𝑌𝐵 ) → ( 𝑊 ∈ ( 𝑆 ( 𝑋 𝑂 𝑌 ) 𝑇 ) → ( ( 𝑋𝐴𝑌𝐵 ) ∧ ( 𝑆 𝑋 / 𝑥 𝑌 / 𝑦 𝐶𝑇 𝑋 / 𝑥 𝑌 / 𝑦 𝐷 ) ) ) )
95 94 adantld ( ¬ ( 𝑋𝐴𝑌𝐵 ) → ( ( ∀ 𝑥𝐴𝑦𝐵 ( 𝐶𝑈𝐷𝑉 ) ∧ 𝑊 ∈ ( 𝑆 ( 𝑋 𝑂 𝑌 ) 𝑇 ) ) → ( ( 𝑋𝐴𝑌𝐵 ) ∧ ( 𝑆 𝑋 / 𝑥 𝑌 / 𝑦 𝐶𝑇 𝑋 / 𝑥 𝑌 / 𝑦 𝐷 ) ) ) )
96 86 95 pm2.61i ( ( ∀ 𝑥𝐴𝑦𝐵 ( 𝐶𝑈𝐷𝑉 ) ∧ 𝑊 ∈ ( 𝑆 ( 𝑋 𝑂 𝑌 ) 𝑇 ) ) → ( ( 𝑋𝐴𝑌𝐵 ) ∧ ( 𝑆 𝑋 / 𝑥 𝑌 / 𝑦 𝐶𝑇 𝑋 / 𝑥 𝑌 / 𝑦 𝐷 ) ) )
97 96 ex ( ∀ 𝑥𝐴𝑦𝐵 ( 𝐶𝑈𝐷𝑉 ) → ( 𝑊 ∈ ( 𝑆 ( 𝑋 𝑂 𝑌 ) 𝑇 ) → ( ( 𝑋𝐴𝑌𝐵 ) ∧ ( 𝑆 𝑋 / 𝑥 𝑌 / 𝑦 𝐶𝑇 𝑋 / 𝑥 𝑌 / 𝑦 𝐷 ) ) ) )