Step |
Hyp |
Ref |
Expression |
1 |
|
el2mpocsbcl.o |
⊢ 𝑂 = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ ( 𝑠 ∈ 𝐶 , 𝑡 ∈ 𝐷 ↦ 𝐸 ) ) |
2 |
|
simpl |
⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉 ) ∧ 𝑊 ∈ ( 𝑆 ( 𝑋 𝑂 𝑌 ) 𝑇 ) ) ) → ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ) |
3 |
|
nfcv |
⊢ Ⅎ 𝑎 ( 𝑠 ∈ 𝐶 , 𝑡 ∈ 𝐷 ↦ 𝐸 ) |
4 |
|
nfcv |
⊢ Ⅎ 𝑏 ( 𝑠 ∈ 𝐶 , 𝑡 ∈ 𝐷 ↦ 𝐸 ) |
5 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑎 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐶 |
6 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑎 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐷 |
7 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑎 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐸 |
8 |
5 6 7
|
nfmpo |
⊢ Ⅎ 𝑥 ( 𝑠 ∈ ⦋ 𝑎 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐶 , 𝑡 ∈ ⦋ 𝑎 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐷 ↦ ⦋ 𝑎 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐸 ) |
9 |
|
nfcv |
⊢ Ⅎ 𝑦 𝑎 |
10 |
|
nfcsb1v |
⊢ Ⅎ 𝑦 ⦋ 𝑏 / 𝑦 ⦌ 𝐶 |
11 |
9 10
|
nfcsbw |
⊢ Ⅎ 𝑦 ⦋ 𝑎 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐶 |
12 |
|
nfcsb1v |
⊢ Ⅎ 𝑦 ⦋ 𝑏 / 𝑦 ⦌ 𝐷 |
13 |
9 12
|
nfcsbw |
⊢ Ⅎ 𝑦 ⦋ 𝑎 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐷 |
14 |
|
nfcsb1v |
⊢ Ⅎ 𝑦 ⦋ 𝑏 / 𝑦 ⦌ 𝐸 |
15 |
9 14
|
nfcsbw |
⊢ Ⅎ 𝑦 ⦋ 𝑎 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐸 |
16 |
11 13 15
|
nfmpo |
⊢ Ⅎ 𝑦 ( 𝑠 ∈ ⦋ 𝑎 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐶 , 𝑡 ∈ ⦋ 𝑎 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐷 ↦ ⦋ 𝑎 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐸 ) |
17 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑎 → 𝐶 = ⦋ 𝑎 / 𝑥 ⦌ 𝐶 ) |
18 |
|
csbeq1a |
⊢ ( 𝑦 = 𝑏 → 𝐶 = ⦋ 𝑏 / 𝑦 ⦌ 𝐶 ) |
19 |
18
|
csbeq2dv |
⊢ ( 𝑦 = 𝑏 → ⦋ 𝑎 / 𝑥 ⦌ 𝐶 = ⦋ 𝑎 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐶 ) |
20 |
17 19
|
sylan9eq |
⊢ ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) → 𝐶 = ⦋ 𝑎 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐶 ) |
21 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑎 → 𝐷 = ⦋ 𝑎 / 𝑥 ⦌ 𝐷 ) |
22 |
|
csbeq1a |
⊢ ( 𝑦 = 𝑏 → 𝐷 = ⦋ 𝑏 / 𝑦 ⦌ 𝐷 ) |
23 |
22
|
csbeq2dv |
⊢ ( 𝑦 = 𝑏 → ⦋ 𝑎 / 𝑥 ⦌ 𝐷 = ⦋ 𝑎 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐷 ) |
24 |
21 23
|
sylan9eq |
⊢ ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) → 𝐷 = ⦋ 𝑎 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐷 ) |
25 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑎 → 𝐸 = ⦋ 𝑎 / 𝑥 ⦌ 𝐸 ) |
26 |
|
csbeq1a |
⊢ ( 𝑦 = 𝑏 → 𝐸 = ⦋ 𝑏 / 𝑦 ⦌ 𝐸 ) |
27 |
26
|
csbeq2dv |
⊢ ( 𝑦 = 𝑏 → ⦋ 𝑎 / 𝑥 ⦌ 𝐸 = ⦋ 𝑎 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐸 ) |
28 |
25 27
|
sylan9eq |
⊢ ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) → 𝐸 = ⦋ 𝑎 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐸 ) |
29 |
20 24 28
|
mpoeq123dv |
⊢ ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) → ( 𝑠 ∈ 𝐶 , 𝑡 ∈ 𝐷 ↦ 𝐸 ) = ( 𝑠 ∈ ⦋ 𝑎 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐶 , 𝑡 ∈ ⦋ 𝑎 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐷 ↦ ⦋ 𝑎 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐸 ) ) |
30 |
3 4 8 16 29
|
cbvmpo |
⊢ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ ( 𝑠 ∈ 𝐶 , 𝑡 ∈ 𝐷 ↦ 𝐸 ) ) = ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐵 ↦ ( 𝑠 ∈ ⦋ 𝑎 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐶 , 𝑡 ∈ ⦋ 𝑎 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐷 ↦ ⦋ 𝑎 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐸 ) ) |
31 |
1 30
|
eqtri |
⊢ 𝑂 = ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐵 ↦ ( 𝑠 ∈ ⦋ 𝑎 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐶 , 𝑡 ∈ ⦋ 𝑎 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐷 ↦ ⦋ 𝑎 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐸 ) ) |
32 |
31
|
a1i |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉 ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ) → 𝑂 = ( 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐵 ↦ ( 𝑠 ∈ ⦋ 𝑎 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐶 , 𝑡 ∈ ⦋ 𝑎 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐷 ↦ ⦋ 𝑎 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐸 ) ) ) |
33 |
|
csbeq1 |
⊢ ( 𝑎 = 𝑋 → ⦋ 𝑎 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐶 = ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐶 ) |
34 |
33
|
adantr |
⊢ ( ( 𝑎 = 𝑋 ∧ 𝑏 = 𝑌 ) → ⦋ 𝑎 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐶 = ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐶 ) |
35 |
|
csbeq1 |
⊢ ( 𝑏 = 𝑌 → ⦋ 𝑏 / 𝑦 ⦌ 𝐶 = ⦋ 𝑌 / 𝑦 ⦌ 𝐶 ) |
36 |
35
|
adantl |
⊢ ( ( 𝑎 = 𝑋 ∧ 𝑏 = 𝑌 ) → ⦋ 𝑏 / 𝑦 ⦌ 𝐶 = ⦋ 𝑌 / 𝑦 ⦌ 𝐶 ) |
37 |
36
|
csbeq2dv |
⊢ ( ( 𝑎 = 𝑋 ∧ 𝑏 = 𝑌 ) → ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐶 = ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐶 ) |
38 |
34 37
|
eqtrd |
⊢ ( ( 𝑎 = 𝑋 ∧ 𝑏 = 𝑌 ) → ⦋ 𝑎 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐶 = ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐶 ) |
39 |
|
csbeq1 |
⊢ ( 𝑎 = 𝑋 → ⦋ 𝑎 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐷 = ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐷 ) |
40 |
39
|
adantr |
⊢ ( ( 𝑎 = 𝑋 ∧ 𝑏 = 𝑌 ) → ⦋ 𝑎 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐷 = ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐷 ) |
41 |
|
csbeq1 |
⊢ ( 𝑏 = 𝑌 → ⦋ 𝑏 / 𝑦 ⦌ 𝐷 = ⦋ 𝑌 / 𝑦 ⦌ 𝐷 ) |
42 |
41
|
adantl |
⊢ ( ( 𝑎 = 𝑋 ∧ 𝑏 = 𝑌 ) → ⦋ 𝑏 / 𝑦 ⦌ 𝐷 = ⦋ 𝑌 / 𝑦 ⦌ 𝐷 ) |
43 |
42
|
csbeq2dv |
⊢ ( ( 𝑎 = 𝑋 ∧ 𝑏 = 𝑌 ) → ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐷 = ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐷 ) |
44 |
40 43
|
eqtrd |
⊢ ( ( 𝑎 = 𝑋 ∧ 𝑏 = 𝑌 ) → ⦋ 𝑎 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐷 = ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐷 ) |
45 |
|
csbeq1 |
⊢ ( 𝑎 = 𝑋 → ⦋ 𝑎 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐸 = ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐸 ) |
46 |
45
|
adantr |
⊢ ( ( 𝑎 = 𝑋 ∧ 𝑏 = 𝑌 ) → ⦋ 𝑎 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐸 = ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐸 ) |
47 |
|
csbeq1 |
⊢ ( 𝑏 = 𝑌 → ⦋ 𝑏 / 𝑦 ⦌ 𝐸 = ⦋ 𝑌 / 𝑦 ⦌ 𝐸 ) |
48 |
47
|
adantl |
⊢ ( ( 𝑎 = 𝑋 ∧ 𝑏 = 𝑌 ) → ⦋ 𝑏 / 𝑦 ⦌ 𝐸 = ⦋ 𝑌 / 𝑦 ⦌ 𝐸 ) |
49 |
48
|
csbeq2dv |
⊢ ( ( 𝑎 = 𝑋 ∧ 𝑏 = 𝑌 ) → ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐸 = ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐸 ) |
50 |
46 49
|
eqtrd |
⊢ ( ( 𝑎 = 𝑋 ∧ 𝑏 = 𝑌 ) → ⦋ 𝑎 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐸 = ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐸 ) |
51 |
38 44 50
|
mpoeq123dv |
⊢ ( ( 𝑎 = 𝑋 ∧ 𝑏 = 𝑌 ) → ( 𝑠 ∈ ⦋ 𝑎 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐶 , 𝑡 ∈ ⦋ 𝑎 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐷 ↦ ⦋ 𝑎 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐸 ) = ( 𝑠 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐶 , 𝑡 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐷 ↦ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐸 ) ) |
52 |
51
|
adantl |
⊢ ( ( ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉 ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ) ∧ ( 𝑎 = 𝑋 ∧ 𝑏 = 𝑌 ) ) → ( 𝑠 ∈ ⦋ 𝑎 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐶 , 𝑡 ∈ ⦋ 𝑎 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐷 ↦ ⦋ 𝑎 / 𝑥 ⦌ ⦋ 𝑏 / 𝑦 ⦌ 𝐸 ) = ( 𝑠 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐶 , 𝑡 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐷 ↦ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐸 ) ) |
53 |
|
simpl |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → 𝑋 ∈ 𝐴 ) |
54 |
53
|
adantl |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉 ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ) → 𝑋 ∈ 𝐴 ) |
55 |
|
simpr |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → 𝑌 ∈ 𝐵 ) |
56 |
55
|
adantl |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉 ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ) → 𝑌 ∈ 𝐵 ) |
57 |
|
simpl |
⊢ ( ( 𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉 ) → 𝐶 ∈ 𝑈 ) |
58 |
57
|
ralimi |
⊢ ( ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉 ) → ∀ 𝑦 ∈ 𝐵 𝐶 ∈ 𝑈 ) |
59 |
|
rspcsbela |
⊢ ( ( 𝑌 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 𝐶 ∈ 𝑈 ) → ⦋ 𝑌 / 𝑦 ⦌ 𝐶 ∈ 𝑈 ) |
60 |
55 58 59
|
syl2an |
⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ∧ ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉 ) ) → ⦋ 𝑌 / 𝑦 ⦌ 𝐶 ∈ 𝑈 ) |
61 |
60
|
ex |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → ( ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉 ) → ⦋ 𝑌 / 𝑦 ⦌ 𝐶 ∈ 𝑈 ) ) |
62 |
61
|
ralimdv |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉 ) → ∀ 𝑥 ∈ 𝐴 ⦋ 𝑌 / 𝑦 ⦌ 𝐶 ∈ 𝑈 ) ) |
63 |
62
|
impcom |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉 ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ) → ∀ 𝑥 ∈ 𝐴 ⦋ 𝑌 / 𝑦 ⦌ 𝐶 ∈ 𝑈 ) |
64 |
|
rspcsbela |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ⦋ 𝑌 / 𝑦 ⦌ 𝐶 ∈ 𝑈 ) → ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐶 ∈ 𝑈 ) |
65 |
54 63 64
|
syl2anc |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉 ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ) → ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐶 ∈ 𝑈 ) |
66 |
|
simpr |
⊢ ( ( 𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉 ) → 𝐷 ∈ 𝑉 ) |
67 |
66
|
ralimi |
⊢ ( ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉 ) → ∀ 𝑦 ∈ 𝐵 𝐷 ∈ 𝑉 ) |
68 |
|
rspcsbela |
⊢ ( ( 𝑌 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 𝐷 ∈ 𝑉 ) → ⦋ 𝑌 / 𝑦 ⦌ 𝐷 ∈ 𝑉 ) |
69 |
55 67 68
|
syl2an |
⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ∧ ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉 ) ) → ⦋ 𝑌 / 𝑦 ⦌ 𝐷 ∈ 𝑉 ) |
70 |
69
|
ex |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → ( ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉 ) → ⦋ 𝑌 / 𝑦 ⦌ 𝐷 ∈ 𝑉 ) ) |
71 |
70
|
ralimdv |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉 ) → ∀ 𝑥 ∈ 𝐴 ⦋ 𝑌 / 𝑦 ⦌ 𝐷 ∈ 𝑉 ) ) |
72 |
71
|
impcom |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉 ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ) → ∀ 𝑥 ∈ 𝐴 ⦋ 𝑌 / 𝑦 ⦌ 𝐷 ∈ 𝑉 ) |
73 |
|
rspcsbela |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ⦋ 𝑌 / 𝑦 ⦌ 𝐷 ∈ 𝑉 ) → ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐷 ∈ 𝑉 ) |
74 |
54 72 73
|
syl2anc |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉 ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ) → ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐷 ∈ 𝑉 ) |
75 |
|
mpoexga |
⊢ ( ( ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐶 ∈ 𝑈 ∧ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐷 ∈ 𝑉 ) → ( 𝑠 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐶 , 𝑡 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐷 ↦ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐸 ) ∈ V ) |
76 |
65 74 75
|
syl2anc |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉 ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑠 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐶 , 𝑡 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐷 ↦ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐸 ) ∈ V ) |
77 |
32 52 54 56 76
|
ovmpod |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉 ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑋 𝑂 𝑌 ) = ( 𝑠 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐶 , 𝑡 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐷 ↦ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐸 ) ) |
78 |
77
|
oveqd |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉 ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑆 ( 𝑋 𝑂 𝑌 ) 𝑇 ) = ( 𝑆 ( 𝑠 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐶 , 𝑡 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐷 ↦ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐸 ) 𝑇 ) ) |
79 |
78
|
eleq2d |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉 ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑊 ∈ ( 𝑆 ( 𝑋 𝑂 𝑌 ) 𝑇 ) ↔ 𝑊 ∈ ( 𝑆 ( 𝑠 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐶 , 𝑡 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐷 ↦ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐸 ) 𝑇 ) ) ) |
80 |
|
eqid |
⊢ ( 𝑠 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐶 , 𝑡 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐷 ↦ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐸 ) = ( 𝑠 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐶 , 𝑡 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐷 ↦ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐸 ) |
81 |
80
|
elmpocl |
⊢ ( 𝑊 ∈ ( 𝑆 ( 𝑠 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐶 , 𝑡 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐷 ↦ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐸 ) 𝑇 ) → ( 𝑆 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐶 ∧ 𝑇 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐷 ) ) |
82 |
79 81
|
syl6bi |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉 ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑊 ∈ ( 𝑆 ( 𝑋 𝑂 𝑌 ) 𝑇 ) → ( 𝑆 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐶 ∧ 𝑇 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐷 ) ) ) |
83 |
82
|
impancom |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉 ) ∧ 𝑊 ∈ ( 𝑆 ( 𝑋 𝑂 𝑌 ) 𝑇 ) ) → ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑆 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐶 ∧ 𝑇 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐷 ) ) ) |
84 |
83
|
impcom |
⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉 ) ∧ 𝑊 ∈ ( 𝑆 ( 𝑋 𝑂 𝑌 ) 𝑇 ) ) ) → ( 𝑆 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐶 ∧ 𝑇 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐷 ) ) |
85 |
2 84
|
jca |
⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉 ) ∧ 𝑊 ∈ ( 𝑆 ( 𝑋 𝑂 𝑌 ) 𝑇 ) ) ) → ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑆 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐶 ∧ 𝑇 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐷 ) ) ) |
86 |
85
|
ex |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → ( ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉 ) ∧ 𝑊 ∈ ( 𝑆 ( 𝑋 𝑂 𝑌 ) 𝑇 ) ) → ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑆 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐶 ∧ 𝑇 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐷 ) ) ) ) |
87 |
1
|
mpondm0 |
⊢ ( ¬ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 𝑂 𝑌 ) = ∅ ) |
88 |
87
|
oveqd |
⊢ ( ¬ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑆 ( 𝑋 𝑂 𝑌 ) 𝑇 ) = ( 𝑆 ∅ 𝑇 ) ) |
89 |
88
|
eleq2d |
⊢ ( ¬ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑊 ∈ ( 𝑆 ( 𝑋 𝑂 𝑌 ) 𝑇 ) ↔ 𝑊 ∈ ( 𝑆 ∅ 𝑇 ) ) ) |
90 |
|
noel |
⊢ ¬ 𝑊 ∈ ∅ |
91 |
90
|
pm2.21i |
⊢ ( 𝑊 ∈ ∅ → ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑆 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐶 ∧ 𝑇 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐷 ) ) ) |
92 |
|
0ov |
⊢ ( 𝑆 ∅ 𝑇 ) = ∅ |
93 |
91 92
|
eleq2s |
⊢ ( 𝑊 ∈ ( 𝑆 ∅ 𝑇 ) → ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑆 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐶 ∧ 𝑇 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐷 ) ) ) |
94 |
89 93
|
syl6bi |
⊢ ( ¬ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑊 ∈ ( 𝑆 ( 𝑋 𝑂 𝑌 ) 𝑇 ) → ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑆 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐶 ∧ 𝑇 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐷 ) ) ) ) |
95 |
94
|
adantld |
⊢ ( ¬ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → ( ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉 ) ∧ 𝑊 ∈ ( 𝑆 ( 𝑋 𝑂 𝑌 ) 𝑇 ) ) → ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑆 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐶 ∧ 𝑇 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐷 ) ) ) ) |
96 |
86 95
|
pm2.61i |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉 ) ∧ 𝑊 ∈ ( 𝑆 ( 𝑋 𝑂 𝑌 ) 𝑇 ) ) → ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑆 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐶 ∧ 𝑇 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐷 ) ) ) |
97 |
96
|
ex |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉 ) → ( 𝑊 ∈ ( 𝑆 ( 𝑋 𝑂 𝑌 ) 𝑇 ) → ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑆 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐶 ∧ 𝑇 ∈ ⦋ 𝑋 / 𝑥 ⦌ ⦋ 𝑌 / 𝑦 ⦌ 𝐷 ) ) ) ) |