Metamath Proof Explorer


Theorem el2xpss

Description: Version of elrel for triple Cartesian products. (Contributed by Scott Fenton, 1-Feb-2025)

Ref Expression
Assertion el2xpss ( ( 𝐴𝑅𝑅 ⊆ ( ( 𝐵 × 𝐶 ) × 𝐷 ) ) → ∃ 𝑥𝑦𝑧 𝐴 = ⟨ 𝑥 , 𝑦 , 𝑧 ⟩ )

Proof

Step Hyp Ref Expression
1 ssel2 ( ( 𝑅 ⊆ ( ( 𝐵 × 𝐶 ) × 𝐷 ) ∧ 𝐴𝑅 ) → 𝐴 ∈ ( ( 𝐵 × 𝐶 ) × 𝐷 ) )
2 1 ancoms ( ( 𝐴𝑅𝑅 ⊆ ( ( 𝐵 × 𝐶 ) × 𝐷 ) ) → 𝐴 ∈ ( ( 𝐵 × 𝐶 ) × 𝐷 ) )
3 el2xptp ( 𝐴 ∈ ( ( 𝐵 × 𝐶 ) × 𝐷 ) ↔ ∃ 𝑥𝐵𝑦𝐶𝑧𝐷 𝐴 = ⟨ 𝑥 , 𝑦 , 𝑧 ⟩ )
4 rexex ( ∃ 𝑧𝐷 𝐴 = ⟨ 𝑥 , 𝑦 , 𝑧 ⟩ → ∃ 𝑧 𝐴 = ⟨ 𝑥 , 𝑦 , 𝑧 ⟩ )
5 4 reximi ( ∃ 𝑦𝐶𝑧𝐷 𝐴 = ⟨ 𝑥 , 𝑦 , 𝑧 ⟩ → ∃ 𝑦𝐶𝑧 𝐴 = ⟨ 𝑥 , 𝑦 , 𝑧 ⟩ )
6 rexex ( ∃ 𝑦𝐶𝑧 𝐴 = ⟨ 𝑥 , 𝑦 , 𝑧 ⟩ → ∃ 𝑦𝑧 𝐴 = ⟨ 𝑥 , 𝑦 , 𝑧 ⟩ )
7 5 6 syl ( ∃ 𝑦𝐶𝑧𝐷 𝐴 = ⟨ 𝑥 , 𝑦 , 𝑧 ⟩ → ∃ 𝑦𝑧 𝐴 = ⟨ 𝑥 , 𝑦 , 𝑧 ⟩ )
8 7 reximi ( ∃ 𝑥𝐵𝑦𝐶𝑧𝐷 𝐴 = ⟨ 𝑥 , 𝑦 , 𝑧 ⟩ → ∃ 𝑥𝐵𝑦𝑧 𝐴 = ⟨ 𝑥 , 𝑦 , 𝑧 ⟩ )
9 rexex ( ∃ 𝑥𝐵𝑦𝑧 𝐴 = ⟨ 𝑥 , 𝑦 , 𝑧 ⟩ → ∃ 𝑥𝑦𝑧 𝐴 = ⟨ 𝑥 , 𝑦 , 𝑧 ⟩ )
10 8 9 syl ( ∃ 𝑥𝐵𝑦𝐶𝑧𝐷 𝐴 = ⟨ 𝑥 , 𝑦 , 𝑧 ⟩ → ∃ 𝑥𝑦𝑧 𝐴 = ⟨ 𝑥 , 𝑦 , 𝑧 ⟩ )
11 3 10 sylbi ( 𝐴 ∈ ( ( 𝐵 × 𝐶 ) × 𝐷 ) → ∃ 𝑥𝑦𝑧 𝐴 = ⟨ 𝑥 , 𝑦 , 𝑧 ⟩ )
12 2 11 syl ( ( 𝐴𝑅𝑅 ⊆ ( ( 𝐵 × 𝐶 ) × 𝐷 ) ) → ∃ 𝑥𝑦𝑧 𝐴 = ⟨ 𝑥 , 𝑦 , 𝑧 ⟩ )